
Water density fluctuations relevant to hydrophobic hydration are unaltered by
attractions
Richard C. Remsing and Amish J. Patel 
 
Citation: The Journal of Chemical Physics 142, 024502 (2015); doi: 10.1063/1.4905009 
View online: http://dx.doi.org/10.1063/1.4905009 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration 
J. Chem. Phys. 142, 224308 (2015); 10.1063/1.4922322 
 
Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures 
J. Chem. Phys. 142, 064501 (2015); 10.1063/1.4906750 
 
Hydrophobic hydration driven self-assembly of curcumin in water: Similarities to nucleation and growth under
large metastability, and an analysis of water dynamics at heterogeneous surfaces 
J. Chem. Phys. 141, 18C501 (2014); 10.1063/1.4895539 
 
Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration 
J. Chem. Phys. 135, 054510 (2011); 10.1063/1.3623267 
 
Assessing the thermodynamic signatures of hydrophobic hydration for several common water models 
J. Chem. Phys. 132, 124504 (2010); 10.1063/1.3366718 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.247.166.234 On: Sun, 22 Nov 2015 14:10:05

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/701402136/x01/AIP-PT/JCP_ArticleDL_092315/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Richard+C.+Remsing&option1=author
http://scitation.aip.org/search?value1=Amish+J.+Patel&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4905009
http://scitation.aip.org/content/aip/journal/jcp/142/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/22/10.1063/1.4922322?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/6/10.1063/1.4906750?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4895539?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4895539?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3623267?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/132/12/10.1063/1.3366718?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 142, 024502 (2015)

Water density fluctuations relevant to hydrophobic hydration are unaltered
by attractions

Richard C. Remsing and Amish J. Patela)

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, USA

(Received 6 October 2014; accepted 14 December 2014; published online 9 January 2015)

An understanding of density fluctuations in bulk water has made significant contributions to our
understanding of the hydration and interactions of idealized, purely repulsive hydrophobic solutes.
To similarly inform the hydration of realistic hydrophobic solutes that have dispersive interactions
with water, here we characterize water density fluctuations in the presence of attractive fields
that correspond to solute-water attractions. We find that when the attractive field acts only in
the solute hydration shell, but not in the solute core, it does not significantly alter water density
fluctuations in the solute core region. We further find that for a wide range of solute sizes and
attraction strengths, the free energetics of turning on the attractive fields in bulk water are accurately
captured by linear response theory. Our results also suggest strategies for more efficiently estimating
hydration free energies of realistic solutes in bulk water and at interfaces. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4905009]

I. INTRODUCTION

Hydrophobic effects and solvent-mediated phenomena, in
general, are important in a wide variety of contexts1–4 ranging
from protein folding5–7 and aggregation,8–10 to colloidal as-
sembly11–13 and detergency.14,15 When a hydrophobic solute is
solvated by water, it excludes water molecules from the region
that it occupies, thereby perturbing the inherent interactions
between the nearby water molecules.1–4,16–18 Because water
molecules have strong hydrogen bond interactions, it is the
penalty for this disruption of the water structure that dominates
hydrophobic hydration free energies. Hard sphere solutes that
simply exclude water molecules from the region they occupy
have thus served as idealized hydrophobic solutes, and their
hydration and assembly have been extensively studied using
both molecular simulations2,19–29 and theory.3,17,20,30–36

The use of hard solutes as ideal hydrophobes is par-
ticularly judicious because their excess hydration free en-
ergy, ∆GHS, is intimately tied to fluctuations in water density
through32,37,38

β∆GHS=−lnPv(N = 0), (1)

where Pv(N) is the probability of observing N waters in the
volume v corresponding to the size and shape of the hard
solute and β = 1/kBT (kB is Boltzmann’s constant and T is the
temperature). Thus, an understanding of density fluctuations
in bulk water has the potential to inform free energies of
hydrophobic hydration and association. Indeed, the notion that
small fluctuations in water density obey Gaussian statistics
lies at the heart of the Pratt-Chandler theory of hydrophobic
hydration.30,31 Using molecular simulations, Hummer et al.
explicitly showed that density fluctuations in small observation
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volumes (v . 1 nm3) are Gaussian, allowing them to relate
∆GHS to the moments of Pv(N).32,33 This simplification has
afforded molecular insights into various phenomena, including
entropy convergence, wherein protein unfolding entropies con-
verge at a common temperature,28,33 as well as the denaturation
of proteins39–41 and the formation of clathrate hydrates41 at
high pressures.

Noting that water at ambient conditions is in close proxim-
ity to liquid-vapor coexistence, the theory of Lum, Chandler,
and Weeks (LCW) predicted34,36,42 that low-N fluctuations
should be enhanced (relative to Gaussian statistics) in large
volumes (v & 1 nm3). Indeed, simulations subsequently ver-
ified that while Pv(N) remains Gaussian near its mean, the
likelihood of low-N fluctuations in large v is enhanced sig-
nificantly in bulk water and even more so near hydrophobic
surfaces; that is, Pv(N) develops fat low-N tails.4,26,27,42–48 This
perspective clarified that water near hydrophobic surfaces sits
at the edge of a dewetting transition that can be readily trig-
gered by small perturbations.48–53 It also led to the prediction
that the assembly of small hydrophobic solutes in the vicinity
of extended hydrophobic surfaces would be barrierless.47,54

Thus, an understanding of density fluctuations in small and
large volumes as well as in the vicinity of interfaces has made
significant contributions to our understanding of hydrophobic
hydration and assembly.

In addition to excluding water, realistic solutes also pos-
sess favorable attractive (van der Waals) interactions with wa-
ter. Here, our goal is to establish a connection between water
density fluctuations and hydration free energies of realistic so-
lutes of various sizes in bulk water and at interfaces. To accom-
plish this, we first turn on solute-water attractive interactions,
and then characterize water density fluctuations corresponding
to the emptying of the solute repulsive core in the presence of
these attractions. The hydration free energy of realistic van der

0021-9606/2015/142(2)/024502/10/$30.00 142, 024502-1 © 2015 AIP Publishing LLC
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Waals solutes, ∆GvdW, is then given by

β∆GvdW= β∆Gatt− lnP(att)
v (N = 0), (2)

where ∆Gatt is the free energy for turning on the solute-water
attractions in bulk water, and P(att)

v (N) is now the probability of
observing N waters in v in the presence of the attractive field.
We show that ∆Gatt is accurately described by linear response
theory (LRT), so that an understanding of P(att)

v (N) informs
∆GvdW in much the same way as Pv(N) has informed ∆GHS.

We quantify P(att)
v (N) for spherical volumes of different

sizes and a range of attractive strengths. We find that the
presence of attractions in both the solute core, v , and its hy-
dration shell, following the Weeks-Chandler-Andersen (WCA)
prescription,55 significantly alters water density fluctuations;
it becomes progressively harder to empty v as the strength of
attractions is increased. However, as far as the estimation of
∆GvdW is concerned, this relative difficulty in emptying v in
the presence of attractions is largely offset by the favorable free
energy, ∆Gatt, of turning on those attractions in the first place.

To minimize cancellation between the favorable β∆Gatt

and the unfavorable −lnP(att)
v (N = 0) terms in Eq. (2), we con-

sider an alternative prescription for hydrating the same solute;
one that involves turning on attractions in the hydration shell,
but not in the solute core, v . The overall value of ∆GvdW does
not depend on which prescription is used and, in particular,
whether attractions are turned on in the solute core or not;
attractions in the core simply increase the magnitude of the
components of ∆GvdW. In the presence of attractions in the hy-
dration shell alone, we find that the water density fluctuations
in the core are remarkably unaltered; attractions effect only a
subtle change in the mean density. We find this to be true for
solutes of all sizes and reasonable attraction strengths. Thus,
our primary finding is that water density fluctuations that are
relevant to hydrophobic hydration are largely unaffected by the
presence of attractions.

Our results also suggest strategies for circumventing the
breakdown of perturbation theories of hydrophobic hydration,
which occurs for large (&1 nm3) solutes.51,56,57 ∆GvdW is typi-
cally estimated by first creating a cavity and subsequently turn-
ing on attractions. The free energy for turning on attractions
can be readily estimated if accurate approximations are avail-
able for the response of the hydration shell water density to the
attractions. This approach works well for small solutes because
water structure around the cavity is not significantly altered
when attractions are turned on, so that water density responds
linearly to attractions. In contrast, a soft vapor-liquid interface
is nucleated around large cavities and is readily displaced
towards the solute when attractions are turned on. As a result,
water density near the cavity increases in a sigmoidal fashion
(and not linearly) as the strength of attractions is increased,
thereby violating a key assumption that underpins perturbation
theory. Because we turn on attractions in bulk water prior to
the formation of a cavity, water density responds linearly to
the strength of attractions, and ∆Gatt is readily estimated using
linear response theory. Water density fluctuations are largely
unaltered when attractions are turned on in the hydration shell
alone, so that −lnP(att)

v (N = 0), and therefore ∆GvdW, can be

estimated from a knowledge of water density fluctuations in
the absence of attractions.

Furthermore, recognizing that the presence of attractions
in the core of a solute has no bearing on its hydration free
energy, also allows for efficient estimation of hydration free
energies in interfacial environments. When hydrating a so-
lute in such inhomogeneous environments, attractions from
neighboring solutes or interfaces acting on v make it harder
to empty the solute core. We recommend that such attractions
should be turned off (at least partially) in a first step, with
the corresponding free energy readily estimated using linear
response theory. The solute core can then be emptied more
easily in a second step because the free energy for doing so
is substantially reduced.

II. METHODS

A. Models

To obtain a qualitative understanding of the influence of
attractive potentials on density fluctuations, we focus on the
solvation of a square well particle in the extended simple point
charge (SPC/E) model of water.58 While we focus on square-
well solutes, our findings are general and hold for more realistic
Lennard-Jones (LJ) solutes (see supplementary material59).
We chose the SPC/E model for water because it reasonably
mimics the bulk density, isothermal compressibility, surface
tension, and liquid-vapor coexistence properties of real water;
these properties primarily influence the behavior of water den-
sity fluctuations.18

Bulk Hydration: The solutes we study interact with water
oxygens through the pair potential shown in Figure 1(a). The
potential has a hard core of radius RC and an attractive region
of width RS− RC and depth ϵ . We consider three core sizes
spanning the small to large solute size regimes of hydrophobic
solvation,34 RC = 0.336 nm, RC = 0.6 nm, and RC = 0.9 nm.
The smallest solute corresponds to the effective hard sphere
radius23,60 of a united atom methane with Lennard-Jones pa-
rameters, σLJ= 0.3448 nm and ϵLJ= 0.8956 kJ/mol.61 For all
solutes, we choose a spherical shell region 0.3 nm in width,
that is, RS= RC+0.3 nm, and set the well-depth, βϵ = 1.

While the repulsive part of the square-well potential is
unambiguously given by the hard sphere pair potential, u0,
the attractive component can be defined in one of two ways
(Figure 1). The first solute-water attractive potential, u1(r),
arises from a WCA-like separation of a standard square-well
potential55 shown in Figure 1(b) and acts on both the core and
shell regions. The contribution of such solute-water attractions
to the Hamiltonian of the system is

U1(R)=−ϵ(Nv(R)+Nvsh(R)) (3)

and depends only on the number of molecules in the core
and shell regions, Nv(R) and Nvsh(R) respectively, where R
denotes a configuration vector containing the positions of all
the water oxygens. The results obtained from this potential can
be qualitatively compared to the WCA attractive portion of the
LJ potential; such a comparison is shown in the supplementary
material.59 Alternatively, an attractive potential that acts on
the shell alone, u2(r), can be considered (Figure 1(c)), and its
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FIG. 1. (a) The square well potential, u(r ), with a hard core repulsion at r = RC and a well of depth, ϵ, and width, RS− RC. (b) This solute-water potential can
readily be split into its repulsive, u0(r ), and attractive, u1(r ), components using a WCA-like prescription.55 (c) Alternatively, u(r ) can be split into u0(r ), and
the attractive potential, u2(r ), which is non-zero only in the shell region, RC < r < RS.

contribution to the system Hamiltonian is

U2(R)=−ϵNvsh(R). (4)

To vary the strength of attractions, we employ a linear coupling
parameter in both cases, that is, we apply attractive potentials,
λiUi, and vary λi to change the interaction strength.

Hydration at interfaces: We also consider the hydration
of a hard solute in the vicinity of a square-well attractive
surface. The surface excludes waters from a cuboid-shaped
volume, vs= 2.5×2.5×1.0 nm3, and has attractive interactions
of strength λ1ϵ with water in an adjoining volume, v1 = 2.5
×2.5×0.3 nm3. The cuboid-shaped hard solute, v = 1.5×1.5
×0.3 nm3, is then hydrated at the center of v1.

B. Simulation details and methods

All simulation data presented here were obtained using
version 4.5.3 of the GROMACS molecular dynamics (MD)
simulation package,62 modified to include the various external
and biasing potentials used in this work. MD simulations were
performed in the isothermal-isobaric (NPT) ensemble, where
the canonical velocity-rescaling thermostat of Bussi et al.63

was used to maintain a constant temperature of 300 K, and a
Parinello-Rahman barostat64 was used to maintain a pressure
of 1 bar. Electrostatic interactions were handled with the parti-
cle mesh Ewald method65 with a real space cutoff of 1 nm and
grid spacing of 0.12 nm. Similarly, van der Waals interactions
were cutoff at a distance of 1 nm, and standard energy and
pressure corrections were used to account for the influence of
the truncated interactions.66

Bulk hydration: We denote the free energy of turning on
the attractive field, λiUi (i = 1,2), by ∆Gi, and the fluctuations
in the presence of the field by P(i)

v (N). For the specific case
of square-well type potentials, the fields, U1 and U2, depend
only on Nv and Nvsh, the number of water molecules in the
solute core and hydration shell, respectively; that is, Ui(R)
=Ui

(
Nv(R),Nvsh(R)) . Thus, both∆Gi and P(i)

v (N) can be read-
ily obtained for a range of attractive strengths, λi, if the prob-
ability, Pv, vsh(N,Nsh), of observing N and Nsh waters in v and
vsh, respectively, in the absence of any solute-water attractions
is known. In particular, P(i)

v (N) can be obtained from the exact

expression

P(i)
v (N)=C

∞
Nsh=0

Pv, vsh(N,Nsh)e−βλiUi(N,Nsh), (5)

where C is a normalization constant. Similarly, ∆Gi can be
determined exactly from

β∆Gi =−ln

N


Nsh

Pv, vsh(N,Nsh)e−βλiUi(N,Nsh). (6)

Derivations of both Eqs. (5) and (6) are included in the sup-
plementary material.59 To obtain Pv, vsh(N,Nsh), we employed
indirect umbrella sampling (INDUS)27 with harmonic biasing
potentials of the form

Ubias(R)= κ1

2
(Ñv(R)− Ñ∗)2+ κ2

2
(Ñvsh(R)− Ñ∗sh)2. (7)

The INDUS approach dictates coarse-graining the discrete
variables Nv and Nvsh to the continuous variables Ñv and Ñvsh,
respectively, through convolution with a truncated and shifted
Gaussian; here, we use a width of 0.01 nm and a cutoff of
0.03 nm for this smoothing function. The force constants, κi,
and the biased potential minima, Ñi

∗, were tuned to achieve
sufficient overlap between neighboring windows. The corre-
sponding Pv, vsh(N,Nsh) distributions were then obtained from
the biased simulations using the unbinned weighted-histogram
analysis method (UWHAM).67,68

Hydration at interfaces: Because simulating the square-
well surface using MD would result in impulsive forces, we
instead employ closely related continuous potentials to mimic
the square-well potential and make use of standard reweighting
techniques69 to estimate the behavior of a true square-well
surface. The exclusion of water molecules from the square-
well surface is accomplished by applying the potential Ũs(R)
= φsÑvs(R), where Ñvs(R) is the coarse-grained number of wa-
ters in vs, and βφs= 12 was chosen to yield a substantial num-
ber of configurations with the volume empty. Analogously, the
attractive potential in the adjoining hydration shell volume, v1,
is Ũ1(R)= φ1Ñv1(R), where Ñv1 is the coarse-grained number
of water molecules in v1, and φ1 ≡ −λ1ϵ . Both Ñvs and Ñv1
were defined according to the INDUS prescription described
above. To estimate the probability, P(1)

v (N), of observing N
water molecules in v , a series of INDUS simulations were then
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performed using a biasing potential similar to the one in Eq.
(7), but with κ2= 0. Averages in a system with a true square-
well surface, ⟨(· ··)⟩, can be related to averages in the mimic
square-well system, ⟨(· ··)⟩′ (simulated using the potentials Ũs

and Ũ1), through reweighting as

⟨(· ··)⟩=


(· ··)δ0,Nvs(R)e

βφsÑvs(R)−βφ1[Nv1(R)−Ñv1(R)]
′


δ0,Nvs(R)e

βφsÑvs(R)−βφ1[Nv1(R)−Ñv1(R)]
′ , (8)

where δi, j is the Kronecker delta function, and Nvs and Nv1
are the number of waters in vs and v1, respectively. This aver-
age, in turn, is evaluated using UWHAM.67,68 The probability,
P(2)
v (N), of finding N waters in v , in the absence of favorable

surface-water interactions in v , is obtained through another
reweighting

P(2)
v (N)=C ′P(1)

v (N)e−βλ1ϵN , (9)

where C ′ is a normalization constant.

III. THE INFLUENCE OF ATTRACTIONS ON WATER
DENSITY FLUCTUATIONS

The attractive field, λ1U1, which acts on both the core and
shell regions, significantly affects water density fluctuations in
the core, as shown in Figure 2(a) for RC= 0.6 nm. As expected,
the average number of molecules in the core region,


Nv(R)

λ1
,

increases with increasing field strength λ1. Here, ⟨(· ··)⟩λi rep-
resents an ensemble average in the presence of the attractive
field λiUi. Importantly, the non-Gaussian nature, or the fatness
of the low-N tails is also diminished, making it increasingly
difficult to empty the core region as λ1 is increased. To better
understand how water density fluctuations are affected by λ1U1,
we extend the model for density fluctuations proposed by
Huang and Chandler42 (see Appendix). The Huang-Chandler
model assumes that reducing Nv below its average value results
in the formation of a bubble, and that the low-N tail in the

water density fluctuations can be described by the energetics of
growing the bubble. As shown in the Appendix, in the presence
of λ1U1, additional work has to be done against the attractive
field to expand the bubble, which results in the low-N tails
of the P(1)

v (N) distributions being diminished. This qualitative
behavior is also observed for both smaller and larger solutes
(see supplementary material59).

In contrast, in the presence of an attractive field such as
λ2U2, which acts only in the hydration shell, the nature of the
density fluctuations in the core region is not changed; see Fig-
ure 2(b). Only a small decrease in the mean,


Nv(R)

λ2
, is

observed when the attractive strength, λ2, is increased. In Fig-
ure 3, the fluctuation spectra, P(2)

v , are shifted horizontally so
that their means are aligned. For all the RC-values studied, the
shiftedspectra, P(2)

v (N )= P(2)
v (N−∆N),where∆N ≡


Nv(R)

λ2
−

Nv(R)

0
, corresponding to various attractions, λ2, collapse

onto a universal curve. Remarkably, this invariance of water
density fluctuations around the mean is independent of whether
the fluctuations are nearly Gaussian (small RC) or have pro-
nouncedfat tails (large RC).This is thecentral resultof thiswork.

To understand the basis of this invariance, we recognize
that the addition of a linear potential (such as λ2Nvsh) to a
perfectly harmonic basin (such as one arising from Pv, vsh be-
ing Gaussian) simply translates the basin (and hence the en-
tire distribution) horizontally.48 Attractions in the shell favor
configurations with more waters than the average, coupling
to the high-Nsh region of Pv, vsh(N,Nsh). Such high-N regions
of water number distributions in bulk water have previously
been shown to follow Gaussian statistics26,27 and Pv, vsh(N,Nsh)
similarly follows a bivariate normal distribution with nonzero
correlation between N and Nsh near its mean. Thus, the λ2U2
potential, which is linear in Nvsh(R) and couples to the Gaussian
high-Nsh region of Pv, vsh(N,Nsh) is expected to shift the entire
Pv, vsh(N,Nsh) distribution towards higher Nsh-values. As λ2 is
increased, the correlations between Nvsh(R) and Nv(R) then
alter


Nv(R), but leave the remainder of P(2)

v (N) unaltered.

FIG. 2. (a) The presence of an attractive field that acts on both the core and shell regions, λ1U1, drastically alters density fluctuations in the core region, as
shown here for a spherical solute with RC = 0.6 nm and RS = 0.9 nm. On increasing the attractive strength λ1, the tails at low N become steeper, indicating
that it is more difficult to evacuate the core volume. (b) In contrast, fluctuations in the core region are not significantly perturbed by the attractive field, λ2U2,
which acts on the hydration shell alone. As the strength of the attractive interactions, λ2, is increased, only a small decrease in the average number of molecules
in the core is observed.
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FIG. 3. Water number distributions, P(2)
v , in the presence of attractive fields λ2U2, shifted horizontally to align their means,


Nv(R)

λ2
, are shown for probe

volumes with radii (a) equivalent to that of a methane, (b) 0.6 nm, and (c) 0.9 nm. Fluctuation spectra obtained over a range of attractions collapse onto a single
curve when plotted as a function of N ≡ N −∆N , where ∆N ≡


Nv(R)

λ2
−

Nv(R)

0
, highlighting that the presence of an attractive potential in the hydration

shell simply decreases the average number of water molecules in the core and not the fluctuations around the mean. This is true independent of solute size and
whether the fluctuations follow Gaussian statistics (solid gray lines).

While the application of U2 increases water density in
the shell region, packing effects can lead to a concomitant
decrease in the average number of waters in the core region.
The layering of water density at the core-shell interface, shown
in Figure 4(a), highlights that attractions in the shell indeed de-
crease the average density in the core. Interestingly, as shown in
Figure 4(b), this decrease in the average number of molecules
in the core region upon application of the potential U2 can be
accurately estimated using linear response theory

∆N ≈−λ2βϵ

δNv(R)δNvsh(R)

0
(10)

given the correlation,

δNv(R)δNvsh(R)

0
, between fluctua-

tions in Nv(R) and Nvsh(R) in the absence of attractions. As
discussed in Sec. V, this agreement will facilitate the develop-
ment of approximations for estimating hydration free energies
of realistic solutes in bulk water. For now, having quantified
the ease with which the core can be emptied in the presence of
the attractive fields λ1U1 and λ2U2, we turn to the free energies
of turning on these potentials in bulk water.

IV. ATTRACTIONS IN THE SOLUTE CORE DO NOT
INFLUENCE ITS HYDRATION FREE ENERGY

Two alternative paths for hydrating the square-well solute
of Figure 1(a) are shown in Figure 5(a). In the upper path, the

attractive potential λ1U1 is first turned on in the core and the
shell, whereas in the lower path, the potential, λ2U2, is turned
on in the shell alone. We denote the free energy for turning
on the attractive field, λiUi, in bulk water by ∆Gi (i = 1,2).
Then, in the second step, a cavity is created in the core region in
the presence of the corresponding attractive potential. The free
energy for creating such a cavity is given by−kBT lnP(i)

v (N = 0)
and is informed by the statistics of density fluctuations, P(i)

v (N),
shown in Figure 2.

As shown in Figures 5(b) and 5(c), turning on attractions
in the both the core and shell regions results in a large and
negative free energetic gain ∆G1, whereas the corresponding
free energy, ∆G2, for turning on attractions in the shell alone
is significantly smaller in magnitude. However, the total hy-
dration free energy is given by the sum of the favorable ∆Gi

and unfavorable −kBT lnP(i)
v (N = 0) terms. The diminished

fluctuations in the presence of U1 (Figure 2(a)) mean that
the unfavorable free energy to form a cavity is also larger in
the presence of U1. The total hydration free energy, ∆GvdW,
estimated through the upper path thus results in a significant
cancellation between the favorable ∆G1 and the unfavorable
−kBT lnP(1)

v (N = 0) terms, as shown in Figure 5(d). Such large
cancellations can lead to significant numerical uncertainty in
the estimation of ∆GvdW.

In contrast, the lower path in Figure 5(a) reduces the
extent of such a cancellation by recognizing that the presence

FIG. 4. (a) Attractions in the shell region, indicated by vertical gray lines, increase water density in the shell, but result in a decrease in the average water density
in the core region, as shown here for RC = 0.6 nm. The decrease in the core density on increasing λ2 is a direct result of layering at the interface between the
core and shell regions. (b) This decrease in the average number of water molecules in the core region, ∆N , as the strength of the potential λ2 is increased, can be
accurately predicted with LRT, Eq. (10).
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FIG. 5. (a) The hydration of a realistic hydrophobic solute is carried out in two steps: an attractive field, λiUi, corresponding to the solute-water attractions
is first turned on in bulk water, and water is emptied from the solute core in a subsequent step. The corresponding free energies are denoted by β∆Gi and
− ln P

(i)
v (0), respectively, where i = 1 represents attractions in both the core and shell regions (top) and i = 2 represents attractions in only the shell region

(bottom). ((b) and (c)) The free energy of turning on the attractive potentialU1 is much larger than that for turning onU2. (d) This results in a larger cancellation
between the favorable β∆Gi and the unfavorable − ln P

(i)
v (0) free energies for i = 1, because the total hydration free energy ∆GvdW = ∆Gi − ln P

(i)
v (0) is the

same for both paths, as shown here for RC = 0.9 nm and λiβϵ = 0.5.

or absence of attractions in the solute core plays no role in
determining the overall solute hydration free energy and mini-
mizing the volume over which the attractions act. In principle,
the cancellation between the favorable β∆Gi and unfavorable
−lnP(i)

v (N = 0) terms can be further reduced or even elimi-
nated by turning on repulsions in the core in conjunction with
attractions in the shell in the first step. Even more complex,
low-variance pathways to hydration may also be chosen to
cleverly minimize the computational overhead.70,71 However,
the advantage of the paths considered here is that they allow
for particularly simple analytical approximations for ∆Gi, as
discussed in Sec. V.

V. EFFICIENT ESTIMATION OF BULK HYDRATION
FREE ENERGIES

Because attractive fields couple to the Gaussian high-N
tails of water density distributions, we expect linear response
theory to provide an accurate estimate of the free energy for
turning on such fields. In particular, we consider the following
approximate forms of Eq. (6):

β∆Gi ≈
βλi
2


Ui(R)

0
+

Ui(R)

λi


(11)

≈ βλi

Ui(R)

0
−
β2λ2

i

2

(δUi(R))2
0

(12)

referred to as LR1 and LR2, respectively. In the context of
thermodynamic integration, LR1 represents the application of

a trapezoid rule to integrate over the entire range of λi, while
LR2 uses the initial slope of the thermodynamic force at λi
= 0 and extrapolates over the range of λi to integrate. For the
square-well potentials considered here, the free energy of turn-
ing on the attractive external field can further be approximated
analytically, yielding

β∆Gi

vi
≈−ρB(λi βϵ)−

ρ2
BκT kBT

2
(λi βϵ)2, (13)

where vi is the volume over which the potential is applied, and
ρB and κT are the density and isothermal compressibility of
bulk water, respectively. To derive Eq. (13) (referred to as LR3)
from LR2, we recognize that fluctuations in Ui are related to
fluctuations in water density, which in turn are related to the
isothermal compressibility. The exact derivations of LR3 and
its generic form applicable to slowly varying potentials are
provided in the supplementary material.59

LR3 suggests that ∆Gi can be estimated simply from a
knowledge of the strength of the attractions, the volume over
which they act, and bulk properties of the solvent. It predicts
that ∆Gi is proportional to the volume, vi, over which the
attractive interactions act and is quadratic in the strength of
the attractions, λi, consistent with previous findings.73 We find
LR3 to be true to a very good approximation, as illustrated in
Figure 6; it begins to break down only for small volumes and
large λi (see supplementary material59). The discrepancy be-
tween the predicted and simulation results for typical attraction
strengths72 is less than five percent. The approximations, LR1
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FIG. 6. (a) The free energy, ∆Gi, of turning on the attractive potential, normalized by the volume, vi, on which the attractions act, is largely independent of
solute size and the range over which the potential acts. ∆Gi is well described by the linear response prediction LR3 of Eq. (13) (solid black line). (b) The
three linear response theory estimates for ∆Gi are found to be highly accurate, as shown here for the RC = 0.9 nm solute. The dashed line indicates a typical
magnitude of attractions for realistic solutes.72

and LR2, provide even more accurate estimates of ∆Gi, with
errors of less than a percent.

In addition to being able to obtain accurate estimates for
∆Gi from linear response theory, our essential finding that
attractions (in the hydration shell of a solute) do not affect water
density fluctuations, also permits accurate estimates of the free
energy for emptying the solute core, −lnP(2)

v (N = 0). Turning
on attractive interactions in the hydration shell only results in
a small shift in the mean, ∆N (Figure 3), which itself can be
readily estimated using linear response theory (Eq. (10)), so
that fluctuations in the presence and absence of attractions can
be related through

P(2)
v (N)≈ Pv(N +∆N). (14)

Evaluating the components of the total bulk hydration free
energy (Eq. (2)) using Eqs. (13) and (14) (for N = 0) leads to
accurate predictions for ∆GvdW, as shown in Figure 7 for the
RC = 0.9 nm solute. This approach thus presents an efficient
way to accurately estimate bulk hydration free energies of
realistic attractive solutes, ∆GvdW, starting from information
on the statistics of water density fluctuations in bulk water,
Pv(N).

VI. EFFICIENT ESTIMATION OF HYDRATION FREE
ENERGIES IN HETEROGENEOUS ENVIRONMENTS

Figure 5(d) highlights that it is efficient to turn off any
attractive fields in the solute core before estimating the free
energy for emptying the core. Such attractive fields (acting on
water) can originate not only from the solute itself but also
from neighboring solutes or interfaces. To demonstrate this, in
Figure 8(a), we illustrate the hydration of a hard solute (shown
in green) in the vicinity of a surface (shown in purple) that
interacts with water through an attractive square well potential
(dark blue gradient). The attractive interactions from the square
well act on the core region of the solute, making it harder to
empty (upper path). Alternatively, the attractive potential can
first be turned off in the solute core region, as shown in the
lower path of Figure 8(a), with the corresponding free energy
accurately estimated by linear response theory. Turning off
the attractions also ensures that emptying the solute cavity is
easier, making it the more efficient alternative (Figure 8(c)).

Indeed, the free energy needed to create a cavity in the
presence of the attractive field is significantly higher (roughly
30 kBT versus 10 kBT), as seen in Figure 8(b). When the attrac-
tive field is turned off in the solute core, the average number of

FIG. 7. (a) The total hydration free energy of a realistic hydrophobic solute, ∆GvdW = ∆G2 − kBT ln P
(2)
v (N = 0), can be described with good accuracy using

the approximations in Eqs. (13) and (14), as shown here for the solute with RC = 0.9 nm. (b) Indeed, for realistic values72 of λ2 (dashed line), the error in
∆GvdW is less than 10%.
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FIG. 8. (a) Top: The hydration of a 1.5 × 1.5 × 0.3 nm3 cuboid-shaped hard solute (green) adjacent to a 2.5 × 2.5 × 1.0 nm3 attractive square-well surface
(purple, well depth βϵ = 1 and width 0.3 nm), entails the creation of a cavity in the presence of attractive surface-water interactions. Bottom: Alternatively,
the solute can be hydrated in two steps; turning off the attractions in the core of the solute in the first step, followed by creating a cavity in the second step.
(b) Emptying the solute core requires a significantly smaller free energy in the absence of attractions in the core. (c) While the solute hydration free energy is
the same in both cases, the free energy for turning off the attractions, −β∆G2, can be accurately estimated by using linear response theory, and the free energy
for subsequently emptying the solute core, − ln P

(2)
v (0), is smaller than − ln P

(1)
v (0), and therefore easier to estimate.

water molecules in the core decreases and a significant non-
Gaussian tail emerges in P(2)

v (N) at low N ; both effects act in
concert to lower the free energy needed to form a cavity. Such
a lowering of the cavity formation free energy allows for more
efficient estimation of hydration free energies in heterogeneous
environments, because fewer biased simulations are needed
to probe the entire range of density fluctuations in the solute
core.

Caveat: While the free energy of turning off the attractive
interactions inside the solute core was accurately described
using linear response theory (LR1) here, this may not always
be the case. In particular, turning off attractions completely in a
sufficiently large volume adjacent to an extended hydrophobic
surface can dewet the volume, causing linear response to break
down.56 However, only weak attractions are needed to wet
a hydrophobic surface; recent work suggests that an attrac-
tive strength of roughly 0.1 kBT74,75 is sufficient to prevent
dewetting. Thus, attractive may be turned off partially without
triggering dewetting, and the corresponding free energy safely
estimated using linear response. In such cases, our revised rec-
ommendation is to reduce the surface-water attractions down
to 0.1 kBT in a first step, followed by cavity creation in the
presence of reduced attractions.

VII. CONCLUSIONS

Water number fluctuations in small volumes follow Gaus-
sian statistics, while those in large volumes have non-Gaussian
tails at low density. An understanding of these fluctuations has
made seminal contributions to our understanding of the hydra-
tion and interactions of idealized, purely repulsive hydropho-
bic solutes. To similarly inform the hydration of realistic hy-
drophobic solutes that have attractive interactions with water,
here we have provided a description of these fluctuations in the
presence of attractive fields. We find that WCA-like attractive
potentials,55 which are non-zero both inside and outside the
solute core, alter the nature of water density fluctuations signif-
icantly, making it more difficult to create a cavity. In contrast,
when attractions are turned on in the hydration shell alone,
water density fluctuations are largely unaltered in both small
and large volumes.

We also find that the favorable free energy for turning on
the various attractive fields is readily approximated by linear
response theory and is proportional to the volume on which the
fields act. Consequently, the free energy of turning on attrac-
tions in both the core and the shell is much larger than the free
energy of turning on attractions in the hydration shell alone.
When attractions are turned on in both the core and the shell,
the favorable free energy of turning on those attractions and the
unfavorable free energetics of emptying the solute core in the
presence of those attractions largely cancel in the estimation
of the total solute hydration free energy. This cancellation is
minimized when the solute-solvent attractions are turned on in
the hydration shell alone, making it the more efficient route for
estimating hydration free energies of realistic solutes.

In addition to informing hydrophobic hydration and in-
teractions, an understanding of density fluctuations has also
facilitated the development of novel simulation methods. By
leveraging an understanding of water density fluctuations, and
the associated response of water density to perturbations, Pa-
tel and Garde recently introduced a method for estimating
cavity hydration free energies that is two orders of magni-
tude more efficient as compared with umbrella sampling.29

Our characterization of density fluctuations in the presence of
slowly varying attractive interactions has similarly allowed us
to suggest strategies for more efficiently estimating hydration
free energies of realistic solutes, both in bulk water and in the
vicinity of interfaces.

Our approach involves turning on attractions in bulk water,
followed by emptying the solute core, and is in contrast with
traditional methods that first create a cavity in bulk water,
and subsequently turn on attractions. Because attractions have
little effect on the structure of water adjacent to small cavities
(small enough for the hydrogen bond network of water to
be maintained around them),23,28,73,76 traditional methods can
readily estimate the free energy for turning on attractions using
linear response theory. However, larger cavities induce dewet-
ting in their vicinity; attractions rewet the solute, so that water
density and consequently the solute-water interaction energy
do not vary linearly with the strength of attractions.1 Indeed,
recent work from Underwood and Ben-Amotz56 has shown a
transition from linear to non-linear response as the solute size is
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increased,56 occurring at roughly 1 nm; the length scale corre-
sponding to the crossover in hydrophobic hydration.34 Because
our approach involves turning on attractions in bulk water
before creating a solute core, it circumvents the breakdown of
linear response theory that plagues the traditional perturbative
treatment of attractive interactions.

The approach to solvation presented here is similar in
spirit to the two-step method considered by Weeks and cowork-
ers35,77 in their development of the molecular-scale van der
Waals (MVDW) theory for inhomogeneous systems, which
was subsequently combined with the Gaussian field model of
Chandler31 to yield the LCW theory of hydrophobicity.34 The
MVDW theory first considers turning on all slowly varying
interactions in the bulk fluid, which include not only the solute-
solvent attractions that we consider here but also long-ranged
solvent-solvent interactions. Near large hydrophobic solutes,
the long-ranged solvent-solvent attractive interactions are un-
balanced and result in a net repulsion away from the solute.35

Such repulsions couple to the non-Gaussian low N tails in
water number distributions and result in dewetting; thus their
effect cannot be captured using linear response. Recognizing
this, the LCW34 theory employed a Landau-Ginzburg free
energy functional that enables repulsive potentials to induce
dewetting. In contrast, because our focus here has been on
slowly varying attractive potentials that couple to the Gaussian
high-N region of water number distributions, we are able to
make judicious use of linear response theory.

The results presented here rely on two essential proper-
ties of attractive interactions: (i) they are slowly varying and
thereby minimally perturb the structure of water, and (ii) they
couple to Gaussian tails of water number distributions. Thus,
the lessons learned from this work will also be applicable to
other interactions that possess these two characteristic features.
In particular, recent work by Weeks and co-workers28,78–82 has
shown that it is instructive to resolve electrostatic interactions
into short- and long-ranged components, in analogy with the
WCA prescription, which divides the Lennard-Jones potential
into a short-ranged repulsive and a slowly varying attractive
component.55 While the long-ranged electrostatic component
follows linear response theory, underpinning dielectric contin-
uum theories,83 the short-ranged interactions are more com-
plex, leading to directional hydrogen bonds and specific ion
effects.84,85 Thus, in hydrating ions, for example, it would be in-
structive to turn on the long-ranged component of electrostatic
interactions first, and investigate how it affects water density
fluctuations; such calculations will be the focus of future work.
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APPENDIX: EXTENSION OF THE HUANG-CHANDLER
MODEL

Here, we describe the response of P(1)
v (N) to an attractive

potential by extending the model developed by Huang and

Chandler (HC).42 The model assumes that reducing Nv(R)
below its average value results in the formation of a spherical
bubble of radius rb, and approximates the density outside the
bubble to be the bulk density, ρB. The free energetics of density
fluctuations (in the absence of an external field) are then given
by the work that must be performed to grow the bubble against
the surface tension γ and the external pressure ∆P =P−Psat,
where P and Psat are the system pressure and the saturation
pressure, respectively. Thus,

− kBT lnPv(N) =G0(rb(N))
≈ 4π

3
r3
b(N)∆P+4πr2

b(N)γ. (A1)

For the sake of simplicity, the term corresponding to the trans-
lational entropy of the bubble has been omitted from the above
expression. The radius of the bubble rb is related to N by

rb(N)=


3
4πρB

(
Nv(R)

0
−N
)1/3

. (A2)

In the presence of attractions in v , work must also be done
against the attractive potential, such that

− lnP(1)
v (N) =−lnPv(N)+ 4π

3
r3
b(N)ρBλ1βϵ (A3)

=
4π
3

r3
b(N)β∆P̃+4πr2

b(N)βγ, (A4)

where we have defined

∆P̃ ≡∆P+λ1ϵ ρB (A5)

as an effective pressure in the probe volume, to illustrate that an
attractive potential that couples to Nv(R) affects Pv(N) in the
same manner as the pressure. Higher ∆P̃ results in an increase
in magnitude of the slope at low N , consistent with the results
in Figure 2(a). Conversely, repulsive potentials, corresponding
to negative values of λ1, should decrease∆P̃ and make it easier
to create a cavity in the liquid.
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