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Abstract

A fundamental goal of  statistical mechanics is to connect a description of  the intermolecular
interactions and the accompanying microscopic structural details of  a molecular system to its
macroscopic thermodynamic properties. When the interactions between molecular components are
treated with sufficient simplicity, as in an ideal gas or a hard sphere fluid for example, the link
between structure and thermodynamics can be apparent. In contrast, when both local and non-local
interactions are present in the system, competition between the various short and long ranged forces
can lead to surprising thermodynamic behaviors as exemplified by the complexities of  liquid water.
Local molecular field (LMF) theory provides a physically motivated formalism for systematically
decomposing the structure and thermodynamics of  molecular systems into portions arising from
local and non-local interactions. In this thesis, LMF theory is employed to examine the structure and
thermodynamics of  molecular systems, with a focus on aqueous solutions.

LMF-motivated truncations of  classical water models are first developed as analysis tools to
explore the roles of  the local hydrogen bond network, dispersion interactions, and long ranged
multipolar interactions in the determination of  several anomalous thermodynamic properties of  bulk
water. This type of  analysis is then extended to the study the relative importance of  hydrogen
bonding and interfacial unbalancing potentials in hydrophobic effects. The underlying ideas of  LMF
theory are then utilized to study local and non-local interactions in ion solvation. Modifications to
classical dielectric continuum theories are explored with a focus on determining the electrostatic
potentials inside ionic cores. LMF ideas are then used to develop the concept of  a Gaussian test
charge. We then argue that this type of  test charge is the appropriate generalization of  a classical point
test charge to probe the dielectric response of  molecularly detailed systems and develop an accurate
formalism for the description of  the dielectric response to such probes. Finally, a LMF theoretic
foundation for performing free energy calculations is developed and tested before concluding the
thesis with a discussion of  future work involving LMF theory.
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God made the bulk;
Surfaces were invented by the devil.

Wolfgang Pauli

1
Introduction

This dissertation is concerned with the link between microscopic structure and macroscopic
thermodynamics. The experimental ability to synthesize and manipulate materials on

nano-scopic length-scales has never been greater, and at the heart of  this ability is knowledge of  the
impact that molecular-scale interactions have on bulk properties. As science and technology move
forward, theoretical advances are a necessary complement to experimental approaches, and are a
necessity when nano-scale properties are of  interest. In particular, a combination of  statistical physics
and computer simulation has proved to be an invaluable tool for such studies. This is the approach
employed herein to study the macroscopic thermodynamic consequences of  molecular-scale
structural details.

Molecular systems can be modeled by prescribing physics-based interaction potentials between
atomic groups, which can then be transcribed into formats amenable to computer simulation. While
the specific form of  these interatomic interactions may vary between systems, most can be separated
into a short ranged component responsible for local structure, like the tetrahedral lattice of  ice, and a
long ranged portion usually arising from Coulomb interactions, which is associated with behavior
occurring over much larger than molecular length-scales. The recently developed local molecular field
(LMF) theory of  nonuniform fluids provides a physical means for optimally dividing such interaction
potentials, in addition to a computationally efficient theoretical technique for determining the
structural and thermodynamic response to the long ranged component of  the
interactions [1, 2, 3, 4, 5]. We will exploit the ideas of  LMF theory to examine the structure and
thermodynamics of  complex systems throughout this dissertation.
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1.1 Uniform Liquid Structure is Dominated by Short Ranged Forces

The successful development of  theories of  nonuniform liquids hinges on an understanding of  such
fluids in the uniform bulk liquid state. Of  particular importance for simple liquids, like the
Lennard-Jones (LJ) fluid, is understanding the relative roles of  repulsive and attractive forces. The
fundamental idea of  separating the roles of  repulsions and attractions has led to monumental
breakthroughs in our understanding of  the phase behavior of  fluids through the work of  van der
Waals, and later work has substantially influenced our understanding of  the liquid state of  matter in
general [6, 7, 8].

At the core of  these developments is the concept of force cancellation. To understand these ideas,
consider the example of  a dense uniform LJ fluid near its triple point, where the LJ potential
describing interparticle interactions is

uLJ(r) = 4εLJ

[(σLJ

r

)12
−
(σLJ

r

)6]
, (1.1)

where −εLJ and σLJ are the energy minimum and inter-particle length scale associated with the fluid.
This potential is shown in Figure 4.8a. The LJ potential can be separated into a short ranged purely
repulsive portion which is rapidly-varying over molecular length-scales and a long ranged,
slowly-varying attractive component. This separation is of  the form developed by Weeks, Chandler,
and Andersen (WCA) in their seminal work on perturbation theory of  uniform liquids [6]. This WCA
separation splits the LJ potential uLJ(r) into its corresponding repulsive and attractive forces, such that

u0(r) =

{
uLJ(r) + εLJ r < r0
0 r > r0

(1.2)

and

u1(r) =

{
−εLJ r < r0
uLJ(r) r > r0

(1.3)

where r0 = 21/6σLJ is the position of  the minimum of  the LJ potential [6] and u0(r) is typically
referred to as the WCA potential throughout the literature.

For a single particle in a dense fluid, the average vector sum of  the attractive forces due to u1(r)
from its surrounding neighbors exactly cancels by symmetry, and this remains true to a good
approximation in most typical configurations of  a uniform fluid. This force cancellation is
schematically illustrated in Figure 4.8b. Therefore, the attractive potential u1(r) will have a negligible
effect on the structure of  a dense fluid and merely provides a uniform background energy, which can
be accounted for in a simple mean field manner [7]. While the role of  the attractive forces is minimal
in a dense uniform fluid, the harsh repulsive interactions encompassed by u0(r) determine the

8



(a)

(b)

(c)

Figure 1.1: (a) Separation of the LJ potential into its rapidly-varying, short ranged and slowly-
varying, long ranged components. (b) Schematic illustration of the idea of force cancellation, wherein
the vector sum of the force due to u1(r) (blue arrows) on a tagged particle (black) from its neigh-
bors effectively cancels. (c) Comparison of the pair distribution functions g(r) of the LJ fluid and its
corresponding WCA reference system at the state point T ∗ = 0.65 and ρ∗ = 0.85.

structure of  the liquid. Indeed, the pair distribution function g(r) of  a LJ fluid is quantitatively
captured by its WCA reference system, as shown in Figure 4.8c, where the pair distribution function
in a homogenous, isotropic system is given by

g(r) =
1

ρ

⟨
1

N

N∑
i=1

N∑′

j=1

δ (r− rj + ri)

⟩
, (1.4)

ρ = N/V is the bulk density of  a system with N particles in a volume V , ri is the position of  particle
i, ⟨· · · ⟩ indicates an ensemble average, δ(r) is the Dirac delta function, and the prime on the sum
over j indicates the omission of  terms when i = j. The highly accurate description of  the LJ fluid by
its WCA reference has led to the successful development of  perturbation theories of  uniform
fluids [6]. By assuming equivalence of  the pair correlation functions of  the LJ and WCA fluids
(g(r) ≈ g0(r)), one can effectively integrate over the structure of  the reference system to obtain
thermodynamic properties of  the full system. These ideas, in conjunction with theoretical
developments to determine the reference fluid g0(r) [9] with high accuracy, comprise the foundation
of  the WCA theory of  uniform fluids [6].

However, the concept of  force cancellation breaks down in the presence of  structural
inhomogeneities. For example, consider introducing a large hard spherical particle (HS) into a LJ
fluid, schematically shown in Figure 1.2a. If  one once again considers the vector sum of  attractive
interactions on a fluid particle, but now for a particle close to the interface between the fluid and the

9



(a)

(b)

Figure 1.2: (a) Schematic illustration of the unbalanced force (blue) on a particle (black) near the
interface of a large hard sphere (red). (b) Comparison of the nonuniform densities of the LJ fluid and
its corresponding WCA reference system at the state point T ∗ = 0.85 and ρ∗ = 0.70.

HS, we see that the slowly-varying long ranged attractions do not cancel. Instead, they provide a net
unbalanced force at the fluid-HS interface that leads to phenomena like drying. The structure of  the
purely repulsive reference fluid does not approximate that of  the corresponding fully interacting LJ
fluid, as evidenced by the nonuniform density distributions shown in Figure 1.2b. Accounting for the
effects of  such unbalanced forces in a short ranged reference fluid requires further theoretical
developments, and this is achieved through the use of  local molecular field theory for nonuniform
fluids.

1.2 Local Molecular Field Theory for Nonuniform Fluids

Local molecular field (LMF) theory utilizes the above-described separation of  molecular interactions
into short and long ranged components to enable the study of  nonuniform systems by simulating
short ranged models in the presence of  an effective external field that accounts for the averaged
effects of  any long ranged interactions [1, 2, 3, 4, 5]. LMF theory considers a nonuniform system of
particles interacting with a pair potential u(r) = u0(r) + u1(r), and in a general external field ϕ(r).
This external field could be due to hard walls, a fixed solute, or an electric field, for example. LMF
theory seeks to map this full system onto a mimic system, wherein interparticle interactions are
described by a short ranged pair potential u0(r). However, the external field in this mimic system is

10



now a renormalized external field ϕR(r), such that this LMF mapping is{
u(r)
ϕ(r)

}
⇒
{
u0(r)
ϕR(r)

}
(1.5)

As discussed above, the short ranged interaction potentials are chosen such that u0(r) contains all the
harsh, rapidly-varying portions of  the potential. These strong short ranged interactions therefore
yield an accurate account of  forces between typical nearest neighbors in a liquid. The long ranged
component u1(r) is chosen to be slowly-varying over molecular length-scales. The LMF mapping in
Equation 1.5, and the renormalized potential ϕR(r), is chosen in principle such that the singlet
density of  the full system matches that of  the mimic system,

ρ(1) (r; [ϕ]) = ρ
(1)
R (r; [ϕR]) . (1.6)

The short ranged system then “mimics” the structure of  the corresponding full system. The
functional dependence of  the densities on the corresponding external fields will be omitted in the rest
of  this work unless necessary for clarity.

The effective field, ϕR(r), is obtained from the self-consistent LMF equation,

ϕR(r) = ϕ(r) +
∫
dr′ρ(1)R (r′)u1(|r− r′|) + C, (1.7)

where C is a constant of  integration that sets the zero of  the potential, and is typically chosen so that
ϕR(r) is zero in the bulk fluid. Equation 1.7 is obtained from an approximate integration of  a
combination of  the corresponding first equations of  the exact Yvon-Born-Green (YBG) hierarchy of
equations for the full and mimic systems,

kBT∇r ln ρ(r) = −∇rϕ(r)−
∫
dr′ρ(r|r′)∇ru(|r− r′|) (1.8)

and
kBT∇r ln ρR(r) = −∇rϕR(r)−

∫
dr′ρR(r|r′)∇ru0(|r− r′|), (1.9)

respectively, where

ρ(r|r′) ≡ ρ(2)(r, r′)
ρ(r)

(1.10)

is the conditional singlet density: the density at r′ given that a particle is at r, such that ρ(2)(r, r′) is the
nonuniform pair density. These YBG equations relate mean interatomic forces to the structure they
induce, such that LMF theory essentially integrates from the “bottom-up” to obtain the structural
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properties of  a molecular system. This contrasts traditional classical density functional theory (DFT)
approaches, in which an approximate free energy functional is differentiated to yield structure [10],
such that one is working from the “top-down.” This distinction between bottom-up and top-down
approaches is significant, especially when determining accurate thermodynamic properties, which will
be the focus of  a later chapter in this thesis.

Subtracting Equation 1.8 from Equation 1.9 when Equation 1.6 holds yields an expression relating
∇rϕ(r) to ∇rϕR(r),

−∇rϕR(r) = −∇rϕ(r)−
∫
dr′ρR(r′; [ϕR])∇ru1(|r− r′|)

−
∫
dr′ [ρ(r′|r; [ϕ])− ρR(r′|r; [ϕR])]∇ru0(|r− r′|)

−
∫
dr′ [ρ(r′|r; [ϕ])− ρ(r′; [ϕ])]∇ru1(|r− r′|). (1.11)

Physically sound approximations are then made to Equation 1.11 to arrive at the LMF equation.
These approximations hinge on two crucial ideas. The first is that a good choice of u0(r) provides an
accurate description of  nearest neighbor interactions, and therefore higher order correlations as
described by the conditional singlet density are also captured by the mimic system on these molecular
length scales, in addition to the singlet density which is captured by construction. The second
approximation requires that u1(r) be slowly-varying over nearest neighbor, molecular length-scales,
and when these conditions are satisfied, Equation 1.7 can be obtained and is found to be highly
accurate. When these conditions hold, the second and third terms in Equation 1.11 vanish. The
remaining terms can then be formally integrated to obtain the LMF Equation 1.7.

For LJ interactions, the WCA separation of  the potential discussed above typically satisfies the
conditions leading to the LMF equation. In systems containing charged particles, experience has
shown that it is very useful to separate the 1/r ≡ v(r) portion of  the Coulomb potential into short
ranged rapidly-varying (v0(r)) and long ranged slowly-varying (v1(r)) components as

v(r) =
1

r
=

erfc(r/σ)
r

+
erf(r/σ)

r
≡ v0(r) + v1(r), (1.12)

where erf(r) and erfc(r) = 1− erf(r) are the usual error and complementary error functions. This
separation is shown in Figure 1.3. The parameter σ is the length-scale on which the potential is
separated, typically referred to as the LMF smoothing length. This length-scale is usually chosen on
the order of  the nearest-neighbor distance between charges. Within an electrostatic context, the
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Figure 1.3: Separation of the 1/r portion of the Coulomb potential into its short ranged, rapidly-
varying and long ranged, slowly-varying components v0(r) and v1(r), respectively. The separation
shown is for σ = 4.5 Å, as illustrated.

interaction potential v1(r) is that due to a unit Gaussian charge distribution of  width σ,

v1(r) =
1

σ3π3/2

∫
dr′
e−(r′/σ)2

|r− r′|
. (1.13)

Analogously, the short ranged potential v0(r) is that arising from a unit point charge and a
neutralizing Gaussian distribution of  charge,

v0(r) =

∫
dr′
[
δ(r′)− e−(r′/σ)2

σ3π3/2

]
1

|r− r′|
. (1.14)

Clearly, v1(r) is slowly-varying for r < σ, and reduces to the full v(r) = 1/r for distances larger than
the smoothing length, as desired.

A detailed discussion of  the derivation of  the LMF equation is detailed elsewhere [1, 11].
Therefore, only the results obtained for LJ and Coulomb potentials are quoted when appropriate.
However, the self-consistent nature of  the LMF equation requires a discussion of  the details
surrounding its solution, and a detailed account of  implementing LMF theory in practical applications
is provided in Appendix A. We will use LMF theory and its physically suggestive decomposition of
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interaction potentials throughout this dissertation to examine the role of  local and non-local forces
on the structure and thermodynamics of  molecular systems, and aqueous media in particular.

1.3 Structure and Thermodynamics of  Bulk Water

There may be no better example of  structural influence on macroscopic properties than water, and
the uniqueness of  liquid water will be the focus of  much of  this dissertation. Water is probably the
most far-reaching and important substance studied by science. Without it, life on Earth would not
exist, and for this reason it is often called the “matrix of  life” [12, 13]. Seemingly uncomplicated
when considering its molecular formula alone, liquid H2O is anything but simple. In fact, water’s
complexity is what allows it to be such a great medium for biology, and understanding the nature of
this liquid is essential to understand processes ranging from protein folding and self-assembly to the
design of  water repellent materials and cleaning supplies [13, 14].

The structure of  bulk water is substantially different from that of  typical simple liquids, such as the
HS and LJ fluids. Unlike simple liquids, water displays local tetrahedral ordering, due to directional
hydrogen bonds (HBs) between neighboring molecules. In classical water potentials like the SPC/E
model [15] discussed extensively in the next chapter, hydrogen bonding arises from electrostatic
attraction between the positive charge of  the hydrogen atomic site and the partial negative charge of
an oxygen atom rich in electron density [13]. Although describing the behavior of  the electrons of  a
water molecule in detail requires computationally intense quantum mechanical techniques, a
reasonable picture of  the liquid structure can be obtained using these simple classical mechanical
models, in which the average electron density of  a molecule is represented through partial point
charges.

Using computer simulations, we first compare the bulk structure of  liquid water to that of  a simple
liquid, namely a LJ fluid with the same LJ parameters as the SPC/E water model. To this end, we first
examine the pair distribution functions g(r) in bulk water and the LJ fluid at the same bulk number
density. The distributions are shown in Figure 1.4 for correlations between oxygen sites in SPC/E
water and between particles in the LJ fluid. Due to H-bonding between water molecules, the first
peak in the SPC/E g(r) is found at a much smaller distance than that for the LJ fluid. In fact, the
repulsive cores of  the LJ potentials of  neighboring H-bonded water molecules overlap significantly,
something that could be produced in a uniform LJ fluid only at huge pressures, and H-bonding in
SPC/E water arises due to frustrated charge-pairing, discussed further in the next chapter.

Another simple measure of  the structure of  the two liquids is the number of  particles within a
distance r from the central particle, termed the coordination number, N(r). The coordination
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Figure 1.4: (top) Comparison of the pair distribution functions, g(r), and the coordination numbers,
N(r) = 4πρ

∫ r
0 dr

′r′2g(r′), for the SPC/E water model and a LJ fluid with the same bulk density
and LJ energy and length-scale parameters. Black solid lines indicate the value of N(r) at the first
minimum of the corresponding g(r), which corresponds to the number of nearest neighbors in the first
solvation shell. (bottom) Snapshots from MD simulations depicting the first solvation shell of SPC/E
water (left) and a LJ fluid (right). In the case of SPC/E water, the central water molecule is shown in
its entirety, with oxygen and hydrogen atoms colored red and light grey, respectively, while its nearest
neighbors are shown only as oxygen atoms, with hydrogen bonds indicated by dashed black cylinders.
For the LJ fluid, the central particle is colored grey, while its nearest neighbors are shown in red.
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number is proportional to the integral of g(r),

N(r) = 4πρ

∫ r

0

dr′r′2g(r′). (1.15)

The coordination numbers of  the two systems are shown in Figure 1.4, with the value of N(r) at the
first minimum of g(r) indicated by solid lines. The particles located between r = 0 and the first
minimum of g(r), r = rmin, are termed the first coordination shell (FCS), and the number of  particles
in this region differs significantly between water and simple liquids. The LJ fluid has a coordination
number of N(rmin) ≈ 12 in the FCS, like a simple close-packed structure. Water, on the other hand,
has between 4 and 5 nearest-neighbors, much lower than expected from simple close-packing
arguments. This value of N(rmin) is a direct result of  the directional H-bonding present in liquid
water, as illustrated by the snapshots of  the FCS structures in water and the LJ fluid in Figure 1.4.

While the structure of  the LJ fluid at high density is dictated mainly by its repulsive forces (and
therefore simple packing arguments) [6], the formation of  intermolecular HBs in water, drawn as
black dashed cylinders in the figure, leads to a water molecule being tetrahedrally coordinated by its
four nearest-neighbors. In an ideal configuration, a molecule of  SPC/E water in the bulk will form
four hydrogen bonds with its neighbors, two by donation of  hydrogen bonds via the explicit
hydrogen sites, and two through accepting hydrogen bonds from neighboring molecules at the site of
the negative charge. Although lone pairs are not explicitly represented in the SPC/E model, the
minimum energy configuration is this tetrahedral H-bonding geometry in which the favorable
electrostatic attractions between opposing charges are maximized, while unfavorable, repulsive
interactions between like charges are minimized. When combined with the repulsive LJ core energies
from neighboring molecules, this leads to an average of  only four H-bonding “sites” on each
molecule. The insertion of  another (fifth) molecule into the FCS without the formation of  a H-bond
to compensate the large LJ repulsive forces is rather unfavorable, although this does occur, and will
be further discussed in the next chapter.

The complex structure of  water, dictated by the propensity to form intermolecular hydrogen
bonds, gives rise to an incredible number of  anomalous thermodynamic properties [16].
Reference [16] lists at least 67 anomalous properties of  water, ranging from its high boiling point,
melting point, and critical temperature, to maxima and/or minima in the specific heat as a function of
temperature (CV and CP ) and its unusually high surface tension and dynamic anomalies such as a
maximum in the diffusion coefficient as a function of  temperature at high pressure. A few of  the
anomalies of  bulk water are examined from the perspective of  LMF theory in Chapter 2, before
turning our attention to nonuniform systems. This chapter is based heavily on R. C. Remsing, J. M.
Rodgers, and J. D. Weeks, J. Stat. Phys., 145, 313–334, 2011 [17].

At the heart of  many processes occurring in aqueous solution is the hydrophobic effect [13, 14]. A
hydrophobic, or “water-fearing” substance is one that is not readily solvated by liquid water, and an
attempt at such can often result in phase separation, such as the common phenomena of  the
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un-mixing of  water and oil [13]. It is often noted that the term hydrophobic is actually a misnomer,
because the low solubility of  nonpolar substances in water results from water having a greater affinity
for itself  than the hydrophobic substance. The hydrophobic effect, or the propensity for hydrophobic
solutes to aggregate in water, has been acknowledged as a major driving force for protein folding, for
example [13, 14]. The amino acid units that make up a protein sequence can be classified as
hydrophobic or hydrophilic (interacting favorably with water). In order to minimize the free energy
of  the system, contact between water and the hydrophobic groups should be kept at a minimum. As a
means to do so, proteins will tend to fold in such a way that the majority of  hydrophobic groups tend
to be located in the interior of  the protein, while hydrophilic groups are at the surface, in contact with
water [13, 14].

It has long been understood that the process of  dissolving a small apolar solute in water differs
substantially from the hydration of  a large hydrophobe, both in structure and thermodynamics.
Therefore, a transition between the two regimes occurs as a solute is “grown” from small to large at a
crossover radius RC [18, 19]. While the solvation of  solutes with a radius less than RC is governed by
small-scale density fluctuations in the liquid, hydration of  an extended solute is dictated by three
underlying features: formation of  a cavity of  the size of  the solute, unbalanced dispersion forces that
lead to interfacial drying phenomena, and any possible distortions and breaking of  the hydrogen
bond network in the vicinity of  the solute. Cavity formation is a characteristic feature of  all solvation
processes, whether in a hard-sphere fluid or water, while the existence of  unbalanced dispersion
forces is observed in both water and simple LJ fluids [3]. Many workers have stressed the underlying
similarities of  the small and large solute size limits in water and LJ fluids [3, 13, 14, 18, 19], but
important details of  the length scale dependence of  hydrophobic hydration must hinge on the
properties of  the hydrogen bond network, especially for solute sizes near the crossover radius.
Nevertheless, most discussions of  the length scale transition in water have not focused on this point,
and the precise role of  hydrogen bonding, as well as the various other forces present in the system in
the vicinity of  this crossover in solvation behavior has not been quantified. This task is the subject of
Chapter 3, which is heavily based on R. C. Remsing and J. D. Weeks, J. Phys. Chem. B, 2013 (in
press) [20].

In addition to the solvation of  simple hydrophobes, the process of  ion hydration is still not fully
understood. In particular, the electrostatic nature of  charged molecular species renders neutrality and
the nature of  the boundary conditions of  a dielectric system quite important. In addition, the exact
representation of  the intermolecular interactions of  water has a significant influence on both the
structure and thermodynamics of  ionic solutions, and leads to distinct asymmetries with respect to
the sign of  the ion charge. We explore the origins of  these asymmetries in Chapters 4 and 5, which
describes aspects of  ongoing collaborative work with researchers at Pacific Northwest National
Laboratory. Specifically, Chapter 4 is concerned with the solvation shell around a simple model of  an
uncharged ionic core, and how the asymmetric intramolecular charge distribution of  a water molecule
induces asymmetries in the structure and thermodynamics before a charge is even introduced in the
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system. The response of  dielectric media to the long wavelength component of  ion charge is
examined in Chapter 5, and a general theoretical formalism for describing this response is developed.

The phrase “from structure to thermodynamics” is embodied by Chapter 6. There, a general
framework for performing free energy calculations with LMF theory is developed. The crux of  this
LMF theoretic formalism is that good structure begets good thermodynamics, and accurate structural
properties of  a molecular system are integrated to obtain the free energy in this “bottom-up”
approach to thermodynamics. After demonstrating the accuracy of  this formalism for describing
numerous processes associated with hydrophobicity, the dissertation is concluded with a summary of
its main points and a discussion of  future work in Chapter 7.
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The central problem in an attempt to understand
the nature of  a liquid from first principles is that of
accounting for its bulk macroscopic properties in terms
of  the structure, motion, and mutual interactions of  the
molecules of  which it may presumed to be composed.

B. Widom

2
Deconstructing Classical Water Models I:

Anomalous Structure and Thermodynamics of
Bulk Water 1

2.1 Introduction

Classical empirical water potentials involving fixed point charges and Lennard-Jones
(LJ) interactions were introduced in the first computer simulations of  water forty years ago and

modern versions are widely used even today in many biomolecular and materials-based simulations.
Two recent reviews [21, 22] have focused on this wide class of  model potentials and assessed their
performance for a broad range of  different structural and thermodynamic properties, some of  which
were used as targets in the initial parameterization of  the models. Despite known limitations
associated with the lack of  molecular flexibility and polarizability, they qualitatively and often
quantitatively capture a large number of  properties of  water and often represent a useful compromise
between physical realism and computational tractability.

Given the simple functional forms of  the intermolecular potentials it may seem surprising that
such good agreement is possible. But recent work has shown that even simpler models where
particles interact via isotropic repulsive potentials with two distinct length scales are able to

1Based in part on R. C. Remsing, J. M. Rodgers, and J. D. Weeks, J. Stat. Phys., 145, 313–334, 2011 [17].
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qualitatively reproduce certain characteristic dynamic and thermodynamic anomalies of  bulk
water [23, 24, 25]. Similarly in dense uniform simple liquids a hard-sphere-like repulsive force
reference system can give a good description of  the liquid structure, and this in turn permits
thermodynamic properties to be determined by a simple perturbation theory [6, 26].

This suggests it should be useful to analyze the construction and predictions of  empirical water
potentials from the perspective of  perturbation theory of  uniform fluids and the related Local
Molecular Field (LMF) theory [1, 2, 3, 4, 5, 6]. LMF theory provides a more general approach
applicable to both uniform and nonuniform fluids and gives strong support to the basic idea of
perturbation theory that in a uniform fluid slowly varying long ranged parts of  the intermolecular
interactions have little effect on the local liquid structure.

To apply these ideas to water we divide the intermolecular interactions in a given water model into
appropriately chosen short and long ranged parts. In this context, it is conceptually useful to consider
separately the slowly varying long ranged parts of  both the LJ interactions and the Coulomb
interactions. This deconstruction of  the water potential via LMF theory provides a hierarchical
framework for assessing separately the contributions of  (i) strong short ranged interactions leading to
the local hydrogen bonding network, (ii) dispersive attractions between water molecules, and (iii) long
ranged dipolar interactions between molecules. Disentangling these contributions without the insight
of  LMF theory is very difficult due to the multiple contributions of  the point charges and the LJ
interactions in standard molecular water models

In uniform systems, the long ranged forces on a given water molecule from more distant neighbors
tend to cancel [6, 7]. The remaining strong short ranged forces between nearest neighbors arise from
the interplay between the repulsive LJ core forces and the short ranged attractive Coulomb forces
between donor and acceptor charges. These forces determine a minimal reference model that can
accurately describe the local liquid structure – the hydrogen-bond network for bulk water. The slowly
varying parts of  the intermolecular interactions are not important for this local structure and could be
varied essentially independently to help in the determination of  other properties as is implicitly done
in the full model. Based on previous work with LMF theory [2, 11, 27], we examine two basic areas
where we expect the different contributions to play varying but important roles – bulk
thermodynamics and nonuniform structure. The short ranged interactions responsible for the
hydrogen-bonding network are clearly necessary in all cases. LMF theory allows us to determine the
relative importance of  dispersive attractions and long-ranged dipolar attractions in these applications
using simple analytical corrections for thermodynamics and an effective external field for
nonuniform structure.

2.2 Local Hydrogen Bonds in Full and Truncated Water Potentials

In this chapter, we will consider one of  the simplest and most widely used water models, the extended
simple point charge (SPC/E) model [15], but similar ideas and conclusions apply immediately to
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Figure 2.1: Schematic diagram of the SPC/E water model listing its various geometric parameters
and interaction parameters. The O-H bond length and H-O-H angle are fixed, such that the molecule
is rigid. The LJ well depth is ϵLJ = 0.65 kJ/mol. The oxygen site is depicted as a large red circle,
while the hydrogen atoms are shown as smaller, gray circles.

most other members of  this class. As shown in Fig. 2.1, SPC/E water consists of  a LJ potential as
well as a negative point charge centered at the oxygen site. Positive point charges are fixed at
hydrogen sites displaced from the center at a distance of  1 Å with a tetrahedral HOH bond angle. It
is a remarkable fact that this simple model can reproduce many structural, thermodynamic, and
dielectric properties of  bulk water as well as those of  water in nonuniform environments around a
variety of  solutes and at the liquid-vapor interface.

In the following we use the perspective of  perturbation and LMF theory to help us see how this
comes about. We use these ideas here not to suggest more efficient simulations using short ranged
model potentials but rather as a method of  analysis that provides physical insight into features of  the
full model as well. Since a detailed description and justification of  LMF theory is given elsewhere [1],
we will focus on qualitative arguments and just quote specific results when needed.

Fig. 2.2 gives some insight into why a perturbation picture based on the dominance of  strong short
ranged forces in uniform environments could be especially accurate for bulk SPC/E and related
water models. This shows two adjacent water molecules with a separation of  2.75 Å that form an

21



Figure 2.2: Optimal hydrogen bonding configuration of water taken from two molecules in ice Ih.
LJ cores are depicted as gray transparent spheres with a diameter σLJ = 3.16 Å, while the hydro-
gen bond between waters with oxygens separated by 2.75 Å is illustrated by a dashed, blue cylinder.
Oxygen and hydrogen atoms are colored red and white, respectively.

optimal hydrogen bond as seen in the structure of  ice Ih. Hydrogen bonding in this model is driven
by the very strong attractive force between opposite charges on the hydrogen and oxygen sites of
adjacent properly oriented molecules. Proper orientation permits similar strong bonds to form with
other molecules, leading to a tetrahedral network in bulk water. The gray circles drawn to scale depict
the repulsive LJ core size as described by the usual parameter σLJ = 3.16 Å. The substantial overlap
indicates a large repulsive core force opposing the strong electrostatic attraction, finally resulting in a
nearest neighbor maximum in the the equilibrium oxygen-oxygen correlation function of  2.75 Å.

It is interesting to note that the first BNS water model introduced in 1970 used a smaller core size
σLJ = 2.82 Å [28]. However a much larger LJ core with strong core overlap at typical hydrogen-bond
distances is a common property of  almost every water model introduced since then and seems to be a
key feature needed to get generally accurate results from simple classical point charge models.
Evidently, the highly fluctuating local hydrogen-bond network in these models arises from
geometrically-frustrated “charge pairing”, where the strong LJ core repulsions and the presence of
other charges on the acceptor water molecule oppose the close approach of  the strongly-coupled
donor and acceptor charges.

We can test the accuracy of  this picture by considering various truncated or “short” water models
where slowly varying long ranged parts of  the Coulomb and LJ interactions in SPC/E water are
completely neglected. We first consider a Gaussian-truncated (GT) water model, already studied by
LMF theory [2, 11, 27]. Here the Coulomb potential is separated into short and long ranged parts as

v(r) =
1

r
=

erfc(r/σ)
r

+
erf(r/σ)

r
= v0(r) + v1(r), (2.1)
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Figure 2.3: Schematic diagrams of (a) GT and (b) GTRC water models. Truncated interactions
are indicated by dashed lines, while full interaction potentials are indicated by solid lines. LJ inter-
actions are represented by black lines, while oxygen and hydrogen electrostatic interaction potentials
are shown as red and gray lines, respectively.

where erf and erfc are the error function and complementary error function, respectively. The
short-ranged v0(r) is the screened electrostatic potential resulting from a point charge surrounded by
a neutralizing Gaussian charge distribution of  width σ. Hence v0(r) vanishes rapidly at distances r
much greater than σ while at distances less than σ the force from v0(r) approaches that of  the full
1/r potential.

In GT water, depicted in Fig. 2.3a, the Coulomb potential associated with each charged site in
SPC/E water is replaced by the short-ranged v0 with no change in the LJ interaction. As suggested
by Fig. 2.2, important features of  the local hydrogen-bond network should be well captured by such a
truncated model if  the cutoff  distance controlled by the length parameter σ in Eq. (2.1) is chosen
larger than the hydrogen bond distance. Following Refs. [11] and [27], here we make a relatively
conservative choice of σ = 4.5 Å, but values as small as 3 Å give essentially the same results. The
circles are drawn to scale with diameters σ and σLJ.

The basic competition between very strong short ranged repulsive and attractive forces in the
hydrogen bond depicted in Fig. 2.2 should be captured nearly as well by an even simpler reference
model where the LJ potential is truncated as well, and replaced by the repulsive force reference
potential u0(r) used in the WCA perturbation theory for the LJ fluid [6]. The resulting Gaussian
truncated repulsive core (GTRC) model is schematically shown in Fig. 2.3b.

As discussed in perturbation theories of  simple liquids [6, 26], a well-chosen reference system
should accurately reproduce bulk structure present in the full system at the same fixed density and
temperature. As illustrated by the pair distribution functions in Fig. 2.4, bulk GT and GTRC water
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Figure 2.4: (a) Oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen site-site pair distribu-
tion functions, gOO(r), gOH(r), and gHH(r), respectively, for the three water models under study
at T = 300 K and v = 30.148 Å3. gHH and gOH have been shifted by 0.5 and 1 units, respectively,
for clarity. (b) Differences between gOO(r) of the full model and that of the designated reference sys-
tems, ∆gOO(r).

models have a liquid state structure virtually identical to that in the full SPC/E model. This very good
agreement is also reflected in other properties of  the hydrogen-bond network. We directly examined
the hydrogen bonding capabilities of  GT and GTRC water models through the calculation of  the
average number of  hydrogen bonds per water molecules, ⟨nHB⟩, as well as the probability distribution
of  a water molecule taking part in nHB hydrogen bonds, P (nHB), using a standard distance criterion
of  hydrogen bonds, ROO < 3.5 Å and θHOO′ < 30◦, where ROO is the oxygen-oxygen distance and
θHOO′ is the angle formed by the H-O bond vector on the hydrogen bond donating water molecule
and the O-O′ vector between the oxygen on the donor water (O) and the acceptor oxygen (O′) [29].
For both GT and GTRC water models, ⟨nHB⟩ and P (nHB) were calculated at temperatures ranging
from 220-300 K, and were found to be nearly identical to the analogous quantities in the full SPC/E
model. These findings give credence to the idea that these two truncated models reproduce the
hydrogen-bond network of  the full model to a high degree of  accuracy.

These truncated models offer a minimal structural representation of  bulk water as a fluctuating
network of  short ranged bonds determined mainly by the balance between the very strong
electrostatic attraction between donor and acceptor charges and the very strong repulsion of  the
overlapping LJ cores. We can view them as primitive water models in their own right, analogous to
other simplified models recently proposed, which capture very well arguably the most important
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structural feature of  bulk water, the hydrogen bond network, and it is instructive to see what other
properties of  water such minimal network models can describe. But corrections from neglected parts
of  the intermolecular interactions are certainly needed for bulk thermodynamic and dielectric
properties and for both structure and thermodynamics of  water in nonuniform environments. LMF
theory provides a more general framework where the truncated models are viewed as useful reference
systems that can be systematically corrected to achieve good agreement with full water models. We
will use both viewpoints herein.

2.3 Simulation Details

All molecular dynamics simulations were performed using modified versions of  the DL_POLY
software package [30] and the SPC/E water model [15] or its variants described in Section 2. The
equations of  motion were integrated using the leapfrog algorithm with a timestep of  1 fs [31] while
maintaining constant temperature and pressure conditions through the use of  a Berendsen
thermostat and barostat respectively [32].

2.3.1 Bulk water simulations

The evaluation of  electrostatic interactions in bulk simulations of  the full SPC/E water model
employed the standard Ewald summation method using a real space cutoff  of  9.5 Å, unless this was
larger than half  of  the box length, in which case the cutoff  was set to half  of  the box length [31].
Short-ranged electrostatic interactions in the GT and GTRC reference systems, as well as LJ
interactions in all systems, were truncated at the real space cutoff  length used in the analogous full
system. Simulations of  bulk water were performed with N = 1000 molecules in the
isothermal-isobaric (NPT) ensemble to determine the density maximum and with N = 256
molecules in the canonical (NVT) ensemble to determine P (T ), the internal pressure, and the
cascade of  anomalies described below. The internal pressure in Eq. (2.8) was calculated by evaluating
ε(v) for numerous values of v at each T . The function ε(v) was then fit to a polynomial, which was
differentiated at the desired v to yield the internal pressure.

2.3.2 Simulation of  nonuniform systems

In order to generate starting configurations for the LV and LS interfacial systems discussed in Section
5, we first equilibrated N water molecules in a cubic geometry, where N is listed in Table 1. The
z-dimension of  the system was then elongated to more than three times the x- and y-dimensions, and
in the case of  the LS interface, a wall potential of  the form

Uw(z) =
A

|z − zw|9
− B

|z − zw|3
(2.2)
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was added at zw = 0 and the parameters A and B are given in Ref. [33]. In order to ensure water
molecules did not approach the wall from z < 0, a repulsive wall was added at large z to constrain
the water molecules to the desired region of  the simulation cell while still allowing a large vacuum
region for the formation of  a vapor phase. Electrostatic interactions were handled using the
corrected Ewald summation method for slab geometries [34] with a real space cutoff  of  11.0 Å,
which was also the cutoff  distance for LJ and short-ranged electrostatic interactions.

2.4 Thermodynamic Anomalies

The complex structure of  water, dictated by the propensity to form intermolecular hydrogen bonds,
gives rise to an incredible number of  anomalous thermodynamic properties [16]. Reference [16] lists
at least 67 anomalous properties of  water, ranging from its high boiling point, melting point, and
critical temperature, to maxima and/or minima in the specific heat as a function of  temperature (CV

and CP ) and its unusually high surface tension and dynamic anomalies such as a maximum in the
diffusion coefficient as a function of  temperature at high pressure. Herein, we utilize the
above-described short ranged variants of  the SPC/E water model to elucidate the molecular origins
of  several anomalous thermodynamic properties of  liquid water. In particular, the density maximum,
as well as the anomalous temperature and density dependences of  the internal pressure of  water are
examined.

2.4.1 Density Maximum

Now we turn our attention to the thermodynamics of  bulk water. For a fixed volume V , temperature
T , and number of  molecules N , the pressure and other thermodynamic properties of  the GT and
GTRC systems will not generally equal those of  the full system. However, because of  the accurate
reference structure, we can correct the thermodynamics using simple mean-field (MF) arguments.
Thus we can define the pressure in the full system to be the sum of  the short-ranged reference
pressure and a long-ranged correction, P = P0 + P1.

Simple corrections to the energy and pressure of  the GT model from this perspective were
recently derived [27]. With σ = 4.5 Å, these corrections are relatively small and were ignored in most
earlier work using truncated water models but they are conceptually important in revealing the
connections between truncated models and perturbation theory and are required for quantitative
agreement. The pressure correction P1 = P q

1 for the GT model arises only from long-ranged
Coulomb interactions and is given as

P q
1 = − kBT

2π3/2σ3

ϵ− 1

ϵ
, (2.3)

where ϵ is the dielectric constant.
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In the case of  the GTRC model, the need for a thermodynamic correction is much more obvious
since we have to correct for the absence of  LJ attractions as well. Here we adopt the simple analytic
correction used in the van der Waals (vdW) equation derived from WCA theory for the LJ fluid, as
discussed in Ref. [3]. Thus P1 = P q

1 − aρ2 for the GTRC potential, where

a ≡ −1

2

∫
dr2 u1(r12) (2.4)

and u1 is attractive part of  the LJ potential. This simple approximation does not give quantitative
results but does capture the main qualitative features and we use it here to emphasize the point that
both the long ranged Coulomb and dispersion force corrections to bulk GTRC water can be treated
by simple perturbation methods.

We can test the accuracy of  these corrections by using them to help determine the temperature
TMD at which the density maximum of  the full SPC/E water model at a constant pressure of  1 atm
should occur. This can alternatively be defined as the temperature at which the thermal expansion
coefficient, αP , is zero. Accordingly, we seek to evaluate αP using the relation

αP ≡ 1

v

(
∂v

∂T

)
P

= −1

v

(
∂P

∂T

)
v

(
∂v

∂P

)
T

, (2.5)

where v = V/N is the volume per particle. Using the last expression we can determine where the
quantity (∂P/∂T )v = 0 by monitoring the corrected pressure of  the reference systems while
changing the temperature at a fixed density. This can be done by simulation in the canonical
ensemble. The fixed density ensures that the structure of  the reference and full systems are very
similar, as assumed in the derivation of  the corrections in Eqs. (2.3) and (2.4). We can also determine
TMD through the first equality in Eq. (2.5) by finding where (∂v/∂T )P = 0. Thus we simulate GT
and GTRC water at constant pressures of P0 = P − P1, where P = 1.0 atm is the pressure in the
full system. Note that the correction P q

1 ≡ P q
1 (T ; ϵ(T )) is temperature-dependent, as is the dielectric

constant ϵ, so that we are not moving along an isobar in P0, but an isobar in P . The
temperature-dependent values of ϵ were taken to be the experimental values [35].

Figs. 2.5a and 2.5b give the density and pressure of  full SPC/E water and the corrected reference
models as a function of  temperature. As expected, the inclusion of P q

1 in the pressure of  GT water
quantitatively corrects the density and pressure of  this system. However, the MF correction applied
to GTRC water, P0 = P − P q

1 + aρ2, is not as accurate, although the dependence of ρ on T is
qualitatively well captured. These remaining errors arise from our use of  the simple van der Waals
aρ2 correction for the long ranged part of  the LJ potential. This level of  agreement is typical when
this correction is used in pure LJ fluids [3] and a full WCA perturbative treatment of  the attractive
portion of  the LJ potential in GTRC water would likely lead to quantitatively accurate results [6].
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Figure 2.5: The dependence of (a) density and (b) pressure for the corrected reference models as a
function of temperature. The analogous quantities for the models without MF corrections are shown
in (c) and (d), respectively. ρ(T ) is calculated at a constant pressure of 1.0 atm and P (T ) is calcu-
lated at a fixed volume of v = 30.148 Å3. Full SPC/E data for ρ(T ) at constant P was taken from
the work of Ashbaugh et al. [36].
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Figure 2.6: (a) The oxygen-oxygen pair distribution function, gOO(r), for the three water models
at T = 300 K. Inset: The average number of hydrogen bonds per water molecule as a function of
temperature, ⟨nHB(T)⟩, for full and truncated water models. (b) Hydrogen bonding efficiency ηHB as
a function of temperature. All results were obtained at a constant uncorrected pressure of 1 atm.

We now turn to the alternate and less accurate interpretation of  the GT and GTRC models as
primitive water models in their own right. Do these models at an uncorrected pressure of  1 atm have
a density maximum and how well does it compare to that of  the full model? To that end, we find
where (∂v/∂T )P = 0 in each model by varying the temperature along an isobar using MD
simulations in the isothermal-isobaric ensemble at a constant pressure of  1 atm. By requiring the
same pressure in the full and reference models, we probe structurally different state points in general
and there is no guarantee that the density and temperature of  the reference systems at a density
maxima (if  present) will be similar to that in the full system. Nevertheless Fig. 2.5c shows that the GT
model does have a density maximum very similar to that of  the full model. This is because the
pressure correction to the density from the long-ranged Coulomb interactions in Eq. (2.3) is very
small on the scale of  the graph. In contrast, the uncorrected GTRC model does not exhibit a density
maximum at P = 1.0 atm, even upon cooling to 50 K.

These results should be compared to earlier work where the TIP4P water potential was
approximated by a simpler “primitive model” [37]. In that work, the repulsive LJ core was mapped
onto a hard-sphere potential, hydrogen bonding was captured by a square-well potential, and
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long-ranged dipole-dipole interactions were represented with a dipolar potential. The equation of
state was found using a perturbative approach, and thermodynamic quantities were analyzed. The
authors of  Ref. [37] found that the inclusion of  dispersion forces does not lead to a density
maximum, and only when both dispersive interactions and long-ranged dipole-dipole interactions
were taken into account did a density maximum appear.

To provide some understanding of  these differing results, we analyze the structure of  the
uncorrected GT and GTRC reference models in comparison to the full model at the common
pressure of  one atmosphere. The oxygen-oxygen radial distribution functions, gOO(r), for each of
the three water models at T = 300 K are depicted in Fig. 2.6a. The GT model is in good agreement
with the full model, consistent with its accurate description of  the bulk water density and the density
maximum. In contrast, as shown later in Fig. 2.11, the coexisting liquid density of  GTRC water is
about about 15% lower than that of  the full water model. Nevertheless the first peak of gOO(r) in
GTRC water is higher than that of  the full water model due to better formation of  local hydrogen
bonds. As shown in the inset, a molecule of  GTRC water has slightly fewer hydrogen bonds on
average than full and GT water models for temperatures higher than 240 K. However the hydrogen
bond efficiency shown in Fig. 2.6b,

ηHB =
⟨nHB⟩
⟨nNN⟩

, (2.6)

where ⟨nNN⟩ is the average number of  nearest-neighbors satisfying ROO < 3.5 Å, indicates that
GTRC water is about 10 percent more efficiently hydrogen bonded to its available neighbors at all
temperatures. In this sense the low density GTRC water at P = 1.0 atm is structurally more ice-like
than the full water model.

These results provide some insight into earlier first principles simulations of  liquid water using
density functional theory [38, 39, 40]. The standard exchange-correlation functionals used there can
give a good description of  local hydrogen bonding, but do not include effects of  van der Waals
interactions. These simulations produced a decrease in the bulk density of  water accompanied by
increased local structural order very similar to that seen here for GTRC water. Moreover, when
dispersive interactions were crudely accounted for, they observed much better agreement with
experiment, in complete agreement with our findings for perturbation-corrected GTRC water.

Our results indicate that van der Waals attractions play the role of  a cohesive energy needed to
achieve the high density present in SPC/E water at low pressure, as demonstrated by the qualitative
accuracy of  Eq. (2.4) and the good agreement of  the GT model. Evidentially a density maximum can
arise only when additional somewhat less favorably bonded molecules are incorporated into the
GTRC network to produce the full water density. If  the local hydrogen bond network of  water at the
correct bulk density is properly described, long ranged dipolar forces are not needed to obtain the
correct behavior of ρ(T ). Indeed, LJ attractions are not needed either provided that the proper bulk
density is prescribed by some other means. Thus we found that if  GTRC water is kept at a high
constant pressure of  3 katm, where its bulk density is close to that of  the full water model at ambient
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conditions, a density maximum is also observed.

2.4.2 Internal Pressure

We further employ the reference water models to explain the anomalous “internal pressure” of
water [41]. For a typical van der Waals liquid, the internal pressure is given by Pi = (∂ε/∂v)T ≈ aρ2

for low to moderate densities, where ε = E/N is the energy per molecule. In fact, it was recently
shown by computer simulation that the portion of  the internal pressure due to the attractions in a LJ
fluid displays this aρ2 dependence even at high densities [42]. Water, on the other hand, displays a
negative dependence of Pi on density. It is this anomalous behavior that we seek to explain.

We begin by partitioning the internal energy of  the system as

ε = εLJ + εq, (2.7)

where εLJ is the Lennard-Jones contribution to the energy and εq is the energy due to charge-charge
interactions (note that the change in kinetic energy when perturbing the volume at constant T is zero,
so we only consider the potential energy). We can then write the internal pressure as

Pi =

(
∂ε

∂v

)
T

= PLJ
i + P q

i . (2.8)

This decomposition of Pi will allow us to determine which molecular interactions are responsible for
the strange dependence of  this quantity on ρ.

Fig. 2.2 suggests the following qualitative picture. At a given temperature and density the dominant
hydrogen bond contribution to the energy ε is determined from the balance between strong repulsive
forces from the LJ cores and strong attractions from the more slowly varying Coulomb interactions
between donor and acceptor charges. The Coulomb contribution P q

i to the internal pressure Pi(T, ρ)
is positive since a small positive change in volume reduces the negative Coulomb energy and similarly
the LJ core contribution to PLJ

i is negative. If  the density is now varied at constant temperature we
would expect the changes in Pi(T, ρ) to be dominated by the rapidly varying LJ core forces.

Conversely, to the extent that the repulsive LJ cores are like hard spheres, they would contribute no
temperature dependence to the internal pressure at fixed density. Thus we expect the more slowly
varying Coulomb forces to largely determine how the internal pressure varies with temperature at
fixed density. The results given below are in complete agreement with these expectations.

We evaluated Eq. (2.8) by performing MD simulations of  water in the canonical ensemble for
various volumes at T = 300 K. The dependence of  the internal pressure on density at T = 300 K is
shown in Fig. 2.7. Note that the total internal pressure, Pi, becomes increasingly negative as ρ is
increased, in direct opposition to the aρ2 dependence given by the vdW equation of  state. However,
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Figure 2.7: (a) The electrostatic contribution to the internal pressure, P q
i , and (b) the analogous

contribution from LJ interactions, PLJ
i . The total internal pressure as a function of density is shown

in the inset. Lines are guides to the eye.

it is known that as the density of  a LJ fluid is increased to high values so that neighboring repulsive
cores begin to overlap, the total Pi exhibits a maximum, after which the internal pressure becomes
increasingly negative from the dominant contribution of  the repulsive interactions [42].

As shown in Fig. 2.2 there is substantial overlap of  the repulsive LJ cores between nearest
neighbors in SPC/E water. The repulsive interactions from these LJ cores dominate the density
dependence of  both ε and Pi for SPC/E and related water models, as evidenced by the similarity of
the internal pressures of  both the full and GTRC water models in Fig. 2.7. Although εq > εLJ for all
density, εq does not exhibit very large changes upon increasing density, a direct consequence of  the
ability of  water to maintain its hydrogen bond network under the conditions studied. Thus the
density dependence of  the internal pressure of  SPC/E water is actually similar to that of  a LJ fluid
but one at a very high effective density with substantial overlap of  neighboring cores.

In addition to the anomalous density dependence of Pi, the temperature dependence of  the
internal pressure of  water has also been called an anomaly [41]. For most organic liquids (and vdW
fluids), the internal pressure decreases with increasing temperature, but that of  water increases when
the temperature is increased, as shown in Fig. 2.8. Using the concepts presented above, we can
rationalize this behavior in terms of  molecular interactions. By decomposing Pi into its electrostatic
and LJ components, we find that P q

i dominates the temperature dependence of  the internal pressure,
increasing with increasing temperature, while PLJ

i is dominated by repulsive interactions at all
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Figure 2.8: (a) The electrostatic contribution to the internal pressure, P q
i , and (b) the analogous

contribution from LJ interactions, PLJ
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v = 29.9 Å3. The total internal pressure as a function of temperature is shown in the inset. Lines
are guides to the eye.

temperatures studied, as evidenced by its negative value for all T . As the temperature of  the system is
increased, the number of  ideally tetrahedrally coordinated water molecules decreases, and the
hydrogen bond network becomes increasingly “flexible”. Therefore, if  one increases the volume of
the system at high T , water will more readily expand to fill that volume. But an increase in the
electrostatic energy will also occur due to a slight decrease in the number of  (favorable) hydrogen
bonding interactions. This will happen to a lesser extent at low temperatures, when the hydrogen
bond network is more rigid and the thermal expansivity of  water is lower.

2.5 The Cascade of  Anomalies

In the previous sections, short-ranged water models were used to provide insight into the anomalous
temperature dependence of  the density, as well as the anomalous temperature and density
dependence of  the internal pressure of  bulk water [17]. In addition, the pair structure as measured
through site-site correlation functions was found to be captured by both GT and GTRC water [17].
In this section, we examine the extent to which the GT and GTRC models reproduce more complex
measures of  the orientational and translational ordering, as well as the dynamics of  bulk SPC/E water
as described by the diffusion coefficient.
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Figure 2.9: Density dependence of (a) the tetrahedral order parameter q, (b) the translational order
parameter t, and (c) the diffusion coefficient D for the SPC/E, GT, and GTRC models at tempera-
tures in the range of 220 K to 340 K. The arrow in (c) indicates the direction of increasing tempera-
ture, for T=220 K to T=340 K in steps of 20 K.

In order to quantify orientational and translational order in the various models, we utilize the order
parameters defined by Errington and Debenedetti [43], q and t, respectively. The tetrahedral order
parameter q is defined as

q = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cosψjk +

1

3

)2

, (2.9)

where ψjk is the angle formed by the vectors connected the oxygen atom of  a water molecule with
those if  its nearest-neighbors j and k, and 0 ≤ q ≤ 1, such that the lower and upper bounds on q
correspond to an ideal gas and a perfect tetrahedral network, respectively.

The translational order parameter t is

t =
1

ξc

∫ ξc

0

dξ |h(ξ)| , (2.10)

where ξ = rρ1/3 is the oxygen-oxygen distance between molecules scaled by the average separation
between molecules. The cutoff  distance is chosen to be ξc = 2.843, following previous work. The
oxygen-oxygen pair correlation function is h(r) = g(r)− 1, such that g(r) is the usual pair
distribution function. The order parameter t quantifies the extent to which translational ordering in
the fluid of  interest deviates from ideal gas behavior, since g(r) = 1 in an ideal gas.

At high density and temperature, the order parameters q and t are in agreement for all three
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models, SPC/E, GT, and GTRC. This is consistent with the idea that long-ranged forces cancel in
dense fluids at high temperatures, and therefore play a negligible role in the determination of  liquid
structure at these state points. As the density and/or temperature is decreased, the GTRC model is
more orientationally and translationally ordered than SPC/E, as evidenced by its larger values of q
and t in Figures 2.9a and 2.9b. This is consistent with the above-drawn conclusion that GTRC water
has a more “ice-like” H-bond network that SPC/E water, even at the same density.

The orientational ordering of  GT water, on the other hand, agrees with SPC/E water for all T and
ρ studied. Orientational structure in bulk water is achieved through delicate balance of  short-ranged
electrostatics and dispersion forces. The former leads to tetrahedral H-bonding between a water and
its four nearest-neighbors, while the latter disrupts the tetrahedrality of  this network by “pulling” a
fifth neighbor into the coordination shell. Because GT water has both local charge-charge
interactions and LJ attractions, the local, orientation structure of  water is accurately captured in this
model.

However, the removal of  long-ranged electrostatic interactions leads to increased translational
ordering at low T and ρ with respect to that of  the SPC/E model. This increased translational
ordering at low temperatures is due to the inability of  GT water to screen dipoles at a distance much
greater than σ. At these low temperatures, dipolar ordering akin to that observed between
hydrophobic walls [2] but to a much lesser extent increases the translational order in the system.
However, at high T , any slight long ranged dipolar ordering is disrupted by thermal fluctuations, and
the translational ordering of  GT water as measured by t agrees with that of  the full SPC/E model at
the same temperature and density.

The diffusion coefficients presented in Figure 2.9c were obtained through linear fitting of  the
long-time behavior of  the mean-squared displacement, MSD(t) = ⟨r2(t)⟩, and use of  the Einstein
relation, 6D = dMSD(t)/dt. It is found that the self-diffusivity of  liquid water is intimately related to
its orientational structuring, with GTRC water diffusing slower than SPC/E and GT water at state
points where it has larger values of  the order parameter q. The D-values obtained for SPC/E and
GT water, however, are in accord for all T and ρ studied, illustrating that the subtle differences
observed in longer-ranged translational order, as measured by t, have little effect on the
self-diffusivity. This is consistent with the classic view of  diffusion processes in liquids; a molecule
“rattles” within its coordination shell on short-timescales, then, when this shell is disrupted, the
molecule “hops” out of  this shell and becomes part of  another coordination shell. From this view,
diffusion rates are a direct consequence of  local ordering in the nearest-neighbor shell of  a tagged
water molecule, as supported by the data presented here.

We now turn our attention to the “cascade of  anomalies” of  each model, as defined by Errington
and Debenedetti. This cascade is constructed from the locations of  the minima and maxima of
various order parameters as a function of ρ and T . The locations of  these extrema in the ρ− T plane
indicate illustrate that the region of  thermodynamic anomalies, as measured by the temperature of
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Figure 2.10: The cascade of anomalies for the (a) SPC/E, (b) GT, and (c) GTRC water models.

maximum density (TMD), is located within the region of  dynamic anomalies, which, in turn is
contained within the structurally anomalous region. The dynamically anomalous region is defined as
that in which the diffusion coefficient increases with increasing density (or pressure), which is
therefore bound by diffusion minima and maxima. The region of  structural anomalies is bound from
below by maxima in the orientational order parameter q (though can be equivalently obtained from
maxima in t), and is bound from above by minima in the translational order parameter t, such that
within the bounds, structural order decreases upon compression.

This general ordering of  anomalous regions is found to be true for all three models. SPC/E and
GT water have nearly identical cascades of  anomalies, but the shape and width of  the boundaries
differ in the GTRC model. The TMD occurs at higher T for GTRC water, but the general shape is
the same as the TMD boundary in SPC/E and GT water. The dynamically anomalous region is
significantly wider for the GTRC water model than that in the other two models. Nevertheless, this
boundary is still contained within the structurally anomalous region, which is nearly equivalent to that
of  the other two models.

2.6 Unbalanced forces in nonuniform aqueous media from the viewpoint of  LMF
theory

In contrast to uniform systems, a net cancellation of  long ranged forces does not occur in
nonuniform environments, and these unbalanced forces can cause significant changes in the structure
and thermodynamics of  the system [2, 3]. As shown above, the bulk structure of  both the GT and
GTRC models are very similar to that of  the full water model at a given temperature and density. But
interfacial structure and coexistence thermodynamic properties of  the uncorrected reference models
can be very different. For example, GTRC water still has a self-maintained liquid-vapor (LV)
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Figure 2.11: Density profiles of oxygen sites at the liquid-vapor interface of SPC/E, GT, and GTRC
water models. The Gibbs dividing surface of each interface is located at z = 0.

interface at T = 300 K as illustrated in Fig. 2.11, even though the LJ attractions are ignored, because
of  the strong charge pairing leading to hydrogen bond formation. However its 90-10% interfacial
width increases to w ≈ 4.9 Å from the w ≈ 3.5 Å seen in both GT water and the full water model,
and the coexisting liquid density of  GTRC water is about about 15% lower. In contrast, the density
profile of  the GT model with LJ interactions fully accounted for is in very good qualitative agreement
with that of  the full model. This strongly suggests that if  local hydrogen bonding is properly taken
into account, the equilibrium structure of  the LV interface of  water is governed mainly by long
ranged LJ attractions, with long ranged dipole-dipole interactions playing a much smaller role. It is
the exact balance of  these long ranged interactions we seek to examine in this section.

LMF theory provides a framework in which the averaged effects of  long ranged forces are
accounted for by an effective external field [1]. It has previously been used mainly as a computational
tool to permit very accurate determination of  properties of  the full nonuniform system while using a
numerical simulation of  the short ranged reference system in the presence of  the effective
field [2, 5, 44]. But the effective or renormalized field also gives a convenient and natural measure of
the importance of  long ranged forces in different environments. In this section we use the
renormalized external fields determined directly from simulations of  interfaces in the full SPC/E
water model along with simulations of  truncated water models to quantitatively examine the relative
influence of  the local hydrogen bond network and unbalanced long-ranged Coulomb and van der
Waals forces.

We first consider the LV interfaces of  the SPC/E, GT, and GTRC water models shown in
Fig. 2.11. The removal of  long-ranged electrostatics in the GT model leaves the density distribution
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virtually unchanged, whereas removal of  the LJ attractions in GTRC water has a substantial impact
on ρ(z). To understand this behavior, we focus our attention on the impact of  the averaged
unbalanced forces from the long-ranged electrostatic and LJ interactions, as determined in LMF
theory from the effective external fields VR1 and ϕLJ

R1, respectively and defined below. The unbalanced
force F acting on an oxygen site from the LMF potentials is given by

FO(r) = −∇rϕ
LJ
R1(r)− qO∇rVR1(r). (2.11)

Here qO is the partial charge on the oxygen site and VR1(r) is the slowly-varying part of  the effective
electrostatic field, given by

VR1(r) =
1

ϵ

∫
dr′ρq(r′)v1 (|r− r′|) , (2.12)

where ρq(r) is the total charge density of  the system. The other contribution ϕLJ
R1(r) is the field arising

from the unbalanced LJ attractions on the oxygen site (where the LJ core is centered), given by

ϕ
LJ
R1(r) =

∫
dr′ [ρ(r′)− ρB]u1 (|r− r′|) , (2.13)

with ρ(r) indicating the nonuniform singlet density distribution of  oxygen sites and ρB defined as the
bulk density of  oxygen sites at the state point of  interest [1, 3]. Since the hydrogen sites lack LJ
interactions, the unbalanced LMF force acting on a hydrogen site is due exclusively to electrostatics,

FH(r) = −qH∇rVR1(r). (2.14)

Given its importance in the density distribution of  water, it may seem natural to examine the
components of  the LMF force on the oxygen sites, FO(z), shown in the inset of  Fig. 2.12a. Naive
examination of  the relative magnitude of  these force functions would lead to the conclusion that
long-ranged electrostatics are the dominant unbalanced force at the LV interface. However, VR1 also
interacts with hydrogen sites and one should instead consider the net forces from long ranged
Coulomb and LJ interaction felt by an entire water molecule at these interfaces.

This ensemble averaged net molecular force ⟨F⟩ (Fig. 2.12b) clearly indicates that the net
unbalanced force at an interface is almost entirely due to long-ranged LJ attractions from the bulk,
which pull water molecules away from the interface. The long-ranged Coulomb contributions to the
average force on a water molecule are essentially negligible in comparison. This is not surprising since
water molecules are neutral, and it has previously been shown that the small net interfacial
electrostatic force simply provides a slight torque on water molecules in this region [2]. This torque
has little effect on the oxygen density distribution, as illustrated by the good agreement of  the GT
model density profile with that of  the full water model in Fig. 2.11. However, it plays a key role in
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Figure 2.12: (a) Density distributions as a function of the z-coordinate for the hydrophobic LS in-
terface and the LV interface of water. (b) Ensemble averaged net force on a water molecule due to
VR1 (open symbols) and ϕLJ

R1 (closed symbols) at the LV (circles) and LS (squares) interfaces. Solid
lines indicate the net force due to u1. The black dashed line at z = 0 Å indicates the position of the
hydrophobic wall. The Gibbs dividing interface of the LV system is located at z = 2.34 Å, in order
to make comparison with the water-wall interface. Inset: Forces on oxygen sites only, determined by
evaluating the gradient of the corresponding LMF potentials.

determining electrostatic and dielectric properties, which are strongly affected by the behavior of  the
total charge density, and here the uncorrected GT model gives very poor results [1, 2].

It is also instructive to compare the unbalanced long ranged forces at the LV interface to those at
the liquid-solid (LS) interface between water and a model hydrophobic 9-3 LJ wall introduced by
Rossky and coworkers [45], as shown in Fig. 2.12b. Despite the large differences in the density
profiles shown in Fig. 2.12a, the net unbalanced forces on molecules at the LV and LS interfaces are
remarkably similar for all z until molecules encounter the harsh repulsion of  the wall and an accurate
sampling of ⟨F(z)⟩ by simulation cannot be made. Water molecules can sample all regions in the
liquid-vapor interface, leading to a smooth ⟨F(z)⟩ at smaller z.

Indeed, the net molecular force due explicitly to a configurational average of  the attractive u1(r)
acting on molecules present at each z-position is in outstanding quantitative agreement with that
arising from ϕ

LJ
R1(z) for all adequately sampled regions in the liquid, as illustrated by the solid lines in

Fig. 2.12b. This serves largely as confirmation of  the validity of  the mean-field treatment inherent in
LMF theory within the liquid slabs. Deviations between the two quantities for distances less than the
Gibbs dividing surface are a reflection of  the increasing effect of  larger force fluctuations due to
long-wavelength capillary waves not well described by mean field theory. The relative magnitudes of
the components of ⟨F⟩ for the LV and LS interfaces are strikingly similar, with the net unbalanced LJ

force
⟨
F
(
z;ϕ

LJ
R1

)⟩
reaching its maximum value of  slightly less than kBT/Å near the Gibbs dividing
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interface and the repulsive boundary of  the wall, respectively.
The similarities of  the unbalanced forces at the LV and the hydrophobic LS interfaces of  water and

the dominance of  the LJ attractions are completely consistent with the analogies commonly drawn
between these two systems [14, 18, 46] and used in the LCW theory of  hydrophobicity [3, 19, 47]. A
common criticism of  LCW theory is its apparent neglect of  the hydrogen bond network of  water and
the use of  a van der Waals like expression for the unbalanced force at an interface. Although some
features of  the network are implicitly captured by using the experimental surface tension and radial
distribution function of  water as input to the theory, electrostatic effects at the interface, including
dipole-dipole interactions, are ignored. However, this assumption is justified since the averaged
effects of  long-ranged dipole-dipole interactions, accounted for by VR1, are shown to indeed be
negligible at a hydrophobic interface (Fig. 2.12). LCW theory correctly describes the unbalanced LJ
attractions from the bulk, which dominates the behavior at both the liquid-vapor and extended
hydrophobic interfaces.

2.7 Conclusions

In this work, we have examined the different roles of  short and long ranged forces in the
determination of  the structure and thermodynamics of  uniform and nonuniform aqueous systems,
using concepts inherent in classical perturbation and LMF theory. In particular, we have evaluated
individually for SPC/E water the contributions of  (i) all the strong short ranged repulsive and
attractive interactions that lead to the local hydrogen-bonding network, (ii) longer ranged dispersive
LJ attractions between molecules, and (iii) long ranged dipole-dipole interactions, and demonstrated a
hierarchical ordering of  their importance in determining several properties of  water in uniform and
nonuniform systems.

All of  our truncated models accurately describe the local hydrogen bonding network, and as
expected, this network alone is sufficient to match bulk structure as well as solvent structure around
small hydrophobic solutes provided that the bulk density and temperature are accurately prescribed.
Furthermore, the anomalous temperature and density dependence of  the “internal pressure” of  water
is found to be dominated by the competing short-ranged repulsive and attractive forces determining
the local hydrogen bonding network as well.

But local network concepts alone cannot capture all the complexities of  even the simple SPC/E
water model. While the dispersive LJ attractions between water molecules primarily provide a
uniform cohesive energy in bulk systems, they strongly influence the structure and density profile of
large scale hydrophobic interfaces. Their importance provides further support for analogies between
water at extended hydrophobic interfaces and the liquid-vapor interface, and the unbalanced LJ force
can be used to quantify the transition between small and large scale hydrophobicity for simple solutes.

Although the long-ranged dipolar interactions between molecules have only small effects on most
of  the interfacial density properties considered here, we have shown elsewhere that they are crucial in
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determining dielectric properties of  both bulk and nonuniform water. Indeed, as will be discussed
elsewhere, we have found that electrostatic quantities may in fact be a sensitive structural probe of
hydrophobicity in general environments [48].

This interaction hierarchy, wherein strong short-ranged local interactions alone determine
structure in uniform environments while the longer ranged forces are needed as well to capture other
properties could prove quite useful in refining simple site-site water models. Current water models
incorporate a vast amount of  clever engineering and empirical fine-tuning and manage to reproduce a
variety of  different properties through a complex balance of  competing interactions with simple
functional forms. Changes in the potential that improve one property generally speaking produce
poorer results for several others.

One promising route to a more systematic procedure may be sensitivity analysis, in which small
perturbations of  potential parameters are made and the correlated response of  a variety of  physical
observables is quantified. By perturbing the relative magnitudes of  short and long ranged
interactions, Iordanov et al. found that thermodynamic properties of  bulk water are most sensitive to
small changes in the LJ repulsions and the short ranged electrostatic interactions [49], in agreement
with our findings. A new water model was then proposed by optimizing parameters to reproduce a
specific bulk thermodynamic quantity (the internal energy) in an attempt to correct the deficiencies
present in a previously developed water potential.

However, the theoretical scheme of  splitting the potential described in this paper may provide a
more concrete and physically suggestive path to incrementally match various known physical
quantities for water without ruining the fitting of  previous quantities, and one could combine an
approach like sensitivity analysis with the conceptual framework presented herein to systematically
optimize a specific water model.

In particular, it has recently been suggested that the accuracy with which a water model can predict
the experimental TMD correlates well with the accuracy that the same model displays in predicting
the thermodynamics of  small-scale hydrophobic hydration [36]. Arguably, the least justified feature of
current simple water models like SPC/E is the functional form of  the core LJ potential u0(r),
especially at the very short separations relevant for describing local hydrogen bonding as illustrated in
Fig. 2.2. One could try to fine-tune a GTRC-type model through alteration of  the local hydrogen
bond network by varying the form of  the repulsive core in order to match the experimental density
maximum, as well as other bulk properties like the internal pressure, in order to obtain a short-ranged
system that yields accurate bulk properties. Although a detailed discussion of  this process is beyond
the scope of  this chapter, one could try to use some type of  optimization procedure to determine
such potentials [49, 50, 51]. Perhaps first principles DFT simulations [38, 39] could be used to
provide a more fundamental description of  the local network. Subsequently, the structure and
thermodynamics of  nonuniform systems, which require dispersions and long ranged Coulomb
interactions, could be used to parametrize the long-ranged interactions.
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In a sense, hydrophobic bonds also represent a
kind of  hydrogen bond (or ‘anti-hydrogen bond’)
because they arise by being unable to participate
in the strong hydrogen bonding of  water molecules;
that is, they are stabilized by the rather strong
hydrogen bonds of  water.

Walter Kauzmann 3
Deconstructing Classical Water Models II: The

Length Scale Dependence of  Hydrophobic
Hydration and Association 1

3.1 Introduction

Hydrophobic interactions play a key role in phenomena ranging from biological processes like
protein folding and membrane formation to the design of  water-repellent materials [13, 14, 46].

Thus, significant effort has been devoted to studying the behavior of  apolar moieties in water. In
pioneering work, Stillinger argued that hard sphere solutes smaller than a critical radius RC can be
inserted into liquid water while maintaining the hydrogen bond network, but for solutes with a radius
larger than RC bonds must be broken, generating a molecular scale interface with properties
resembling that of  the liquid-vapor interface in water [18]. More recent work has confirmed the basic
features of  this idea and put the arguments on a firmer statistical mechanical
foundation [3, 14, 19, 46].

While this qualitative description of  the length scale dependence of  hydrophobic hydration seems
physically very reasonable, it focuses only on the hydrogen bond network of  water and makes no
mention of  the van der Waals (VDW) attractions and long ranged multipolar interactions between

1Based heavily on R. C. Remsing and J. D. Weeks, J. Phys. Chem. B, 2013 (in press) [20].
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water molecules or of  the VDW attractions that would be present between a more realistic solute and
the solvent. Moreover, a qualitatively similar length scale transition is seen in a dense Lennard-Jones
(LJ) fluid near the triple point, with the formation of  a “dry” vapor-like interface around a large hard
sphere solute [3]. In that case clearly there are no hydrogen bonds and the transition is generated
solely by unbalanced VDW attractive forces arising from solvent molecules far from the solute.

Consideration of  such unbalanced forces is an essential ingredient in the Lum-Chandler-Weeks
(LCW) theory of  hydrophobicity [19], which uses the same basic framework to describe hard sphere
solvation in simple liquids and in water, differing only in the thermodynamic parameters needed as
input to the theory [19, 52, 53]. Indeed LCW theory has been criticized for not treating hydrogen
bonds and other distinctive features of  water more explicitly and there has also been considerable
debate about possible effects of  solute-solvent LJ attractions on the proposed length scale transition
in water [46]. Thus it seems useful to explore in more detail the varying roles hydrogen bonds, VDW
interactions, and long ranged multipolar interactions play in hydrophobic solvation, and to determine
what analogies exist to solvation in simple, non-associating fluids.

To that end, we build on our previous work [17] using truncated water models, and exploit the
underlying ideas of  perturbation [6, 7] and local molecular field [1, 3] (LMF) theories of  uniform and
nonuniform fluids, respectively, to study hydrophobic solvation and association from small to large
length scales. We employ short ranged variants of  the SPC/E water model to show that small scale
solvation and association in water is governed by the energetics of  the hydrogen bond network alone.
However when the solute is large and the hydrogen bond network is broken at the hydrophobic
interface, water behaves in a manner qualitatively similar to a simple fluid, with unbalanced LJ
attractions dominating the solvation behavior.

In the next section, the truncated water models are briefly introduced and our simulation methods
are detailed. Section III examines the roles of  unbalanced dispersion and electrostatic forces in
determining the equilibrium solvation structure around small and large apolar solutes. The strength
of  the hydrogen bond network around small solutes is then analyzed by perturbing the hydration shell
in Section IV. The role of  this network in setting the length-scale for the crossover in solvation
thermodynamics is then studied in Section V. The origin of  entropy convergence is briefly discussed
in Section VI. Finally, the hydrophobic association of  model methane and fullerene molecules is
studied in Section VII. Our conclusions and a discussion of  the implications of  this work are given in
Section VIII.

3.2 Models and Simulation Details

Hydrogen bonds in most classical water models arise from “frustrated charge pairing”, where an
effective positive charge on a hydrogen site of  one molecule tries to get close to a negatively charged
acceptor site on a neighboring molecule, as discussed in the previous chapter [17]. This strong
attractive interaction is opposed by the overlap of  the repulsive LJ cores and the presence of  other
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hydrogen sites in the acceptor molecule. As a result, short ranged versions of  the full water model
where Coulomb interactions are truncated at distances larger than the hydrogen bond length and with
only truncated LJ core interactions if  desired can still give a very accurate description of  the hydrogen
bond network and pair correlation functions in bulk water [2, 17].

In this chapter, we use the extended simple point charge (SPC/E) model of  water [15] and the
short ranged variants of  this model discussed in the previous chapter [17] to examine hydrophobic
hydration and association as the solute perturbs the hydrogen bond network. The truncated models
provide a hierarchical framework for disentangling in such classical models the separate contributions
of  (i) strong short ranged interactions leading to the hydrogen bond network, (ii) longer-ranged VDW
attractions between water molecules and with the solute, and (iii) long ranged dipolar interactions
between water molecules.

In order to compare the SPC/E water model at a pressure of P = 1 atm with the short ranged GT
and GTRC models in the work presented below, the latter two models were simulated at corrected
pressures yielding the same density using the pressure corrections described earlier [17, 27]. In the
preceding chapter, it was shown that simple analytical corrections to the pressure can bring the bulk
densities of  these three models into quantitative agreement. All data presented in this work were
obtained from molecular dynamics simulations performed in the isothermal-isobaric ensemble
(constant NPT) using a modified version of  the DL_POLY2.18 software package [30]. Constant
temperature and pressure conditions were maintained through the use of  a Berendsen thermostat and
barostat, respectively [32]. The evaluation of  electrostatic interactions in simulations of  the full
SPC/E water model employed the Ewald summation method [31].

It is instructive to compare the solvation behavior of  water to that of  a simple LJ fluid at an
analogous state point throughout this work. Therefore, following the work of  Huang and
Chandler [52], we also study a LJ fluid at a state point near the triple point, where the potential is
truncated and shifted at 2.5σ. This LJ fluid is studied at a reduced temperature and pressure of
T ∗ = kBT/ϵ = 0.85 and P ∗ = Pσ3/ϵ = 0.022, respectively, corresponding to a reduced density of
ρ∗ = ρσ3 = 0.70. In order to study the analogous short ranged reference fluid, we use the same
repulsive force truncation of  the LJ potential as was used for the GTRC water model, and study the
model at a mean-field corrected pressure that accounts for the lack of  LJ attractions [17].

We should emphasize that the above-mentioned short ranged GT and GTRC models are not being
used in this paper as replacements for standard long-ranged models such as SPC/E or to give
accurate representations of  most properties of  real water. Rather, we utilize these models as analysis
tools to examine the different roles the hydrogen bond network as described by the GT or GTRC
models, long ranged dispersions, and dipolar interactions play in determining the properties of
systems containing liquid water.

However, the GT model describes very well pair correlation functions and hydrogen bond statistics
in bulk water, and as we discuss further below, it also captures many features of  the water density in
nonuniform environments including the basic length scale transition for hydrophobic solutes [17].
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But thermodynamic and particularly electrostatic properties depend sensitively on the long ranged
Coulomb interactions and GT results need corrections for quantitative accuracy. Acharya and
Garde [54] have recently carried out a detailed study of  the strengths and weaknesses of  the GT model
as a simple water model in a variety of  settings, including both hydrophobic and ionic solvation.

3.3 The Influence of  Long Ranged Interactions on Interfacial Structure

In this section, we examine the role of  the various unbalanced forces in determining the interfacial
structure of  water near a hydrophobic solute. The solute is considered to be a uniform density of  LJ
particles, such that its interaction with water can be represented by an integration of  the LJ potential
over the volume of  the solute, resulting in the integrated “9− 3” potential of  Huang and
Chandler [55]

Usw (r;RS) = πεswρσ
3
sw

[
4

5
σ9

sw

(
1

8rr8+
− 1

9r9+
− 1

8rr8−
+

1

9r9−

)

− 2σ3
sw

(
1

2rr2+
− 1

3r3+
− 1

2rr2−
+

1

3r3−

)]
, (3.1)

where r± = r ±RS . The parameters of  the potential are chosen to mimic paraffin, such that the
density of  LJ sites, energy, and length scale are given by ρ = 0.0240 Å−3, εsw = 0.882 kJ/mol, and
σsw = 3.468 Å, respectively [55]. Furthermore, in order to make this particle as hydrophobic as
possible, only the repulsive part of  the potential is used, such that the solute-water interaction
potential used in the MD simulations is given by

U0,sw(r) =

{
Usw(r)− Usw (r0) , r ≤ r0
0, r > r0

(3.2)

where r0 is the location of  the minimum of  the potential. Finally, we should note that the size of  the
particles is better represented through an effective hard-sphere radius, RHS, rather than the size
parameter RS found in the potential. This effective radius can be estimated as [9]

RHS ≈
∫ ∞

0

dr {1− exp [−βU0,sw(r)]} , (3.3)

where β = (kBT )
−1, and will be reported as RHS herein.

The hydration structure around small solutes has been postulated to be a direct consequence of  the
need for water to maintain its hydrogen bond network. A small solute can be “inserted” into bulk
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Figure 3.1: Density distributions around solutes of radii RHS ≈ 2 Å (a) and RHS ≈ 20 Å (b). The
inset in (b) depicts the renormalized portion of the LJ LMF for GTRC water in units of kBT .

water with the network continuing around the solute without breaking hydrogen bonds. Indeed, in
the small solute regime we find that the nonuniform densities of  GT and GTRC models around an
apolar particle are nearly identical to that of  the full SPC/E water, dramatically confirming that local
hydrogen bonding dictates the hydration structure in this limit (Figure 3.1a).

In the large solute limit, Figure 3.1b, the density profiles of  SPC/E and GT water are still very
similar, demonstrating that long ranged electrostatic interactions have an almost negligible influence
on this measure of  interfacial structure. GTRC water, on the other hand, has a ρ(r) markedly
different from that of  SPC/E water.

Removal of  the LJ attractions from the bulk liquid in GTRC water eliminates the phenomena of
drying, and it evidentially wets the surface of  the solute. According to LMF theory [1], we can
account for the averaged effects of  the neglected LJ forces by using a renormalized solute field

ϕ
LJ
R (r) = U0,sw(r) +

∫
dr′ [ρR(r′)− ρB]u1 (|r− r′|) , (3.4)

where quantities obtained in the presence of  the effective field are indicated by the subscript ‘R’
throughout this work, ρB is the bulk density of  the fluid, and u1(r) is the attractive portion of  the LJ
potential. The use of  this renormalized field recovers drying behavior and brings the density profile
of  GTRC water into qualitative agreement with that of  the SPC/E and GT models, as illustrated by
the curve labeled ‘GTRC-LJLMF’ in Figure 3.1b. The renormalized portion of  the LMF,
ϕ

LJ
R1(r) ≡ ϕ

LJ
R (r)− U0,sw(r), provides an effective force that pushes solvent molecules away from the

solute, as shown in the inset of  Figure 3.1b.
From the data presented in Figure 3.1, we can conclude that the unbalanced forces arising from LJ

attractions are the driving force for drying at extended hydrophobic interfaces. Indeed, we have
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previously shown that the net force on a water molecule at an extended hydrophobic interface from
long ranged electrostatics is much smaller than that from LJ attractions [17]. Nevertheless, long
ranged electrostatics play a subtle but important role in determining the orientational preferences of
water and properties dependent upon this orientational structure. One such quantity is the
electrostatic or polarization potential Φ(r) felt by a test charge

Φ(r) = −
∫ r

0

dr′E(r′) = −
∫ r

0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r′′), (3.5)

where ρq(r) ≡ ⟨
∑

i qiδ(r− ri)⟩ is the ensemble averaged charge density of  the system and E(r) is
the electric field due to the polarization of  water molecules induced by the presence of  the solute.

The polarization potential of  SPC/E water, shown in Figure 3.2a, reaches a constant value of
approximately 500 mV in the bulk region, consistent with previous determinations of  interface
potentials at extended hydrophobic interfaces for this water model [2]. Removal of  the long ranged
electrostatic interactions in GT water leads to an approximate charge density that does not predict
this plateau in the bulk region, Figure 3.2a. Thus there is a net electric field E(r) in this system, even
far from the solute surface as shown in Figure 3.2b. The appearance of  a non-vanishing electric field
in the bulk of  GT water is associated with an over-orientation of  interfacial OH bonds toward the
solute surface. This is evidenced by a larger peak at θOH ≈ 0◦ in the probability distribution P (θOH)
for interfacial GT water molecules in comparison to that observed for SPC/E water, shown in
Figure 3.2c, where θOH is the angle formed by the OH bond vector and the oxygen-solute vector

The increase in the number of  OH groups pointing toward the interface in GT water is driven by
the tendency to maintain the hydrogen bond network alone. This results in the formation of  an
overly ordered dipole layer at the interface, demonstrated by the peak at θµ ≈ 60◦ in P (θµ), shown
in Figure 3.2d, where θµ is the angle formed by the dipole vector of  water and the oxygen-solute
vector. Without long ranged dipole-dipole interactions, water far from the surface does not respond
to the presence of  this dipole layer, and E(r) remains non-zero well into the bulk region. However,
we can compensate for the averaged effects of  the long ranged electrostatics through the introduction
of  the electrostatic LMF for an uncharged solute [1]

VR(r) =
∫
dr′ρqR(r

′)v1 (|r− r′|) , (3.6)

where v1(r) = erf(r/σ)/r is the long ranged, slowly varying component of 1/r, separated with a
smoothing length σ = 4.5 Å [17] herein, and in general σ should be chosen to be greater than the
nearest-neighbor distance in a fluid [1]. Inclusion of  this renormalized solute potential in the GT
water system leads to quantitative accuracy of  both the electrostatic and orientational structure of
interfacial water, evidenced by the curves labeled GT-LMF in Figure 3.2.
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Figure 3.2: (a) Polarization potential Φ(r) and (b) the corresponding electric fields E(r) obtained
for a solute of RHS ≈ 20 Å in SPC/E and GT water, as well as for GT water in the presence of the
electrostatic LMF (GT-LMF). (c) Probability distributions of the angle formed by the OH bond vector
and the vector connecting the oxygen site with the center of the solute (θOH), for molecules within
1 Å of the solute surface for the three systems shown in (a). The analogous distributions for the dipo-
lar angle θµ are shown in (d).
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In his seminal work on nonpolar solutes in aqueous solutions, Stillinger deduced that orienting an
OH bond toward the interface provides the least energetic detriment to the hydrogen bond network
of  water [18]. In GT water there are no opposing long ranged electrostatic interactions and the
energetics of  the hydrogen bond network alone determines the orientational preferences of  water at
the interface. However, this results in too high a probability of  pointing an OH bond toward the
interface, illustrating that while hydrogen bonding is a major driving force in determining the
structure of  water around large apolar solutes, it is not the sole determinant of  the observed
orientational preferences of  interfacial water.

In an earlier contribution, Stillinger and Ben-Naim initially postulated that the dipole and
quadrupole moments of  water lead to a mean torque on a molecule at the interface with its vapor that
orients the dipole moment of  an interfacial water molecule toward the bulk liquid [56]. This behavior
is reflected in the change of P (θµ) upon the inclusion of  long ranged interactions through VR, which
provides the slowly-varying torque necessary to slightly turn the molecular dipoles of  interfacial water
in the direction of  the bulk and obtain the desired orientational structure, evidenced by the
distributions P (θµ) shown in Figure 3.2d. Therefore, the orientational structure of  water at extended
hydrophobic surfaces is a result of  a delicate balance of  the energetics of  the hydrogen bond network
and the mutipolar interactions arising from the electrical asymmetry of  a water molecule, with the
former dominating.

3.4 The Response of  Interfacial Water to Unbalanced Forces

In this section, we examine the response of  short ranged reference systems around solutes of  varying
sizes to the presence of  very strong unbalanced forces like those seen in reality only for very large
solutes. This provides a stringent test of  the stability of  the hydrogen bond network around small
solutes even when subjected to strong perturbations. In order to accomplish this task, we scale the
long ranged LJ LMF determined for a large solute of  radius RHS ≈ 20 Å by its radius, and then
rescale the field to the desired solute size, R̃HS,

ϕ̃R1

(
r;λ, R̃HS

)
= λϕ

LJ
R1

(
R̃HS

RHS
r;RHS

)
. (3.7)

where ϕLJ
R1(r) is the slowly-varying renormalized portion of  the LMF shown in the inset of

Figure 3.1b. Here the notation ϕLJ
R1 (r;RHS) indicates that the field ϕLJ

R1 is a function of r and that it
was determined when a solute of  radius RHS is fixed at the origin. The fictitious, rescaled LMF is
indicated by ϕ̃R1, and the coupling parameter λ is used to further adjust the magnitude of  this field.
In effect we have taken the large unbalanced LJ force around a large solute, which Figure 3.1b shows
is strong enough to significantly perturb the large scale density profile of  GTRC water when
corrected with LMF theory, and artificially applied it to a small scale system like that in Figure 3.1a
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with an intact local hydrogen bond network. This provides insight into the very different response
interfaces around small and large hydrophobic solutes have to repulsive forces over a wide range of
magnitude as λ is varied, including exceptionally large unbalanced forces seen in reality only near
large hydrophobic solutes.

In order to quantify the response of  water to strong unbalanced forces, we focus on the
λ-dependence of  the average number of  water molecules in the solute solvation shell, ⟨N(λ)⟩ϕ̃R1

, as
well as the corresponding response function

χ(λ) = − 1

⟨N(0)⟩ϕ̃R1

(
∂ ⟨N(λ)⟩ϕ̃R1

∂λ

)
, (3.8)

where ⟨· · · ⟩ϕ̃R1
indicates that the ensemble average is performed in the presence of  the field

ϕ̃R1

(
r;λ, R̃HS

)
. The function ⟨N(λ)⟩ϕ̃R1

is calculated for distances r < rmin, where rmin is defined
as the distance at which the density distribution in the absence of  the field reaches its first minimum.

In the large scale hydration regime the broken hydrogen bonds in the interfacial region effectively
permit the interface to detatch from the solute and the interface is “soft” and fluctuating. We expect
water to have a response qualitatively similar to that of  simple liquids where drying occurs with
increasing strength of ϕ̃R1. However, in the small length scale limit, while network fluctuations
certainly occur, the hydrogen bond network is basically maintained around the solute. We thus expect
that the small scale solute-water interface is “stiff ” and highly resistant to perturbations unless they
are strong enough to break hydrogen bonds. This should lead to behavior that is fundamentally
different from that of  a simple LJ fluid, which lacks such strong, local interactions.

As postulated above, in the large solute regime, the behavior of ⟨N(λ)⟩ϕ̃R1
and χ(λ) are

qualitatively similar for both GTRC water and the WCA fluid (Figures 3.3b and 3.3d). Gradual
dewetting is observed with increasing field strength, until no molecules are present in the solvation
shell region at high values of  the coupling parameter. In fact, as λ is increased, a peak in the response
function χ is observed, indicative of  a drying transition in the hydration shell of  the solute; the details
of  the transition differ between GTRC water and the WCA fluid due to differences in state points
and interaction potentials.

In the small solute regime, the WCA fluid displays signatures of  a drying transition completely
analogous to those seen in the large solute case with a simple shift in λ. GTRC water, on the other
hand, does not display characteristics of  such nanoscale dewetting (Figures 3.3a and 3.3c); ⟨N(λ)⟩ϕ̃R1

stays roughly constant and the response function fluctuates about zero. Using a typical geometric
definition of  a hydrogen bond [17, 29], we find that the average number of  hydrogen bonds per
molecule, for waters located between the solute and the position of  the first maximum in the
corresponding ρ(r), fluctuates around 3.5 for all λ ≥ 0, very close to the bulk value of  3.6 hydrogen
bonds per water molecule. Therefore, the hydrogen bond network is maintained around the small
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Figure 3.3: Average number of truncated water and LJ molecules in the first solvation shell as a
function of the coupling parameter λ for solutes of radii RHS ≈ 3 Å (a) and RHS ≈ 15 Å (b). Re-
sults are shown for both GTRC water and the WCA fluid (with the LJ parameters of SPC/E water),
and ⟨N(λ)⟩ϕ̃R1

has been normalized by its value in the case of zero field in order to make comparisons
between the two fluids. The corresponding response functions are shown in (c) and (d), respectively.
Solid lines in (a) and (b) are spline fits to ⟨N(λ)⟩ϕ̃R1

and those in (c) and (d) are the negative deriva-
tives of the corresponding fits.
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solute for all studied values of λ, and the strong local interactions of  the hydrogen bond network
prohibit drying at the solute surface, even in the presence of  the extremely large external fields
considered herein.

The above-described results indicate that the underlying physics behind the solvation behavior in a
LJ fluid is qualitatively similar in the small and large length scale regimes, dependent only on the
magnitude of  the unbalancing potential arising from the bulk, while that of  water qualitatively differs
in the two regimes. In the large length scale regime, water behaves in a manner similar to a LJ fluid,
with the unbalanced LJ attractions having a substantial impact on the solvation structure. For solutes
smaller than the crossover radius, however, water wets the surface of  the solute even in the presence
of  extremely large (though fictitious) unbalancing potentials; the hydration shell remains intact due to
the great strength of  the local hydrogen bond network. Therefore, interfacial fluctuations and the
physics dictating where the length scale transition occurs is different for water than for simple,
non-hydrogen bonding fluids.

3.5 Hydrogen bonding sets the scale for the crossover in hydration thermodynamics

The above-described physical balance between hydrogen bonding and interfacial unbalancing
potentials also plays a key role in the solvation thermodynamics of  apolar solutes. Gibbs free energies
of  solvation, ∆G, were calculated by performing equilibrium simulations of  solutes with effective
hard sphere radii RHS ≤ 13 Å in increments of ∆RHS ≈ 0.5 Å. Due to poor phase space overlap
between neighboring windows, ∆RHS was decreased to 0.25 Å to determine ∆G for solutes with
RHS > 7 Å solvated by GTRC water. The solvation free energies presented herein were calculated
using the Bennett acceptance ratio or BAR [57, 58] method. To emphasize the crossover in the
scaling behavior of  the solvation free energies, we normalize ∆G by the surface area of  the apolar
solute (Figure 3.4), ∆G̃ = ∆G/4πR2

HS.
In the small solute regime, RHS ≤ RC ≈ 5.0 Å, the hydration free energies are in agreement for all

three models. This illustrates that the hydration thermodynamics of  small, nonpolar solutes are
dictated by the local structure of  water alone, as would be expected from the conclusions drawn
above regarding solvation in the SPC/E, GT, and GTRC models. Indeed, the dominant role of  local
structure in the small solute regime is not restricted to water, as indicated by the agreement of  the
solvation free energies for LJ and WCA fluids for small solute sizes shown in Figure 3.4b.

The free energy for large solutes scales with surface area in both SPC/E water and the LJ fluid,
and here long ranged interactions become increasingly important. Only small differences in ∆G are
observed between SPC/E and GT water, reflecting the relatively small role of  long ranged
electrostatics in hydrophobic hydration [17]. LJ attractions, on the other hand, make a substantial
contribution to the hydration free energy. Indeed because of  the absence of  these attractions, GTRC
water completely lacks the plateau in ∆G̃ for large solute sizes.

The behavior of  the GTRC water model can be explained by noting that in the large solute regime,
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Figure 3.4: Solvation free energies of apolar spheres per unit solute area as a function of solute ra-
dius, scaled by the effective diameter of a corresponding solvent molecule (deff = 2.75 Å for water),
for (a) SPC/E, GT, and GTRC water models, as well as (b) a LJ fluid and its corresponding WCA
reference system. Error bars are smaller than the symbols shown.

∆G ∼ PVS + γAS , where VS and AS are the volume and surface area of  the solute, respectively, P is
the pressure of  the system, and γ is the solute-water surface tension. In order to obtain the same bulk
density as SPC/E water at a pressure of  1 atm, the GTRC model must be maintained at a pressure of
roughly 3 katm. At this state the GTRC water model is far from liquid-vapor coexistence, and the
pressure is large enough to make the PVS term dominate the behavior of ∆G for large solutes.

However we have previously shown that GTRC water can indeed have a self-maintained
liquid-vapor interface, but at a lower bulk density close to that of  ice. The interface is maintained by
the strong short ranged Coulomb attractive forces between donor and acceptor sites and the need to
preserve as many hydrogen bonds as possible [17]. However, because there are no unbalanced forces
from LJ attractions, the surface tension is much smaller than that of  the full SPC/E model.

As shown in the curve labeled “GTRC-coex” in Figure 3.4a, the solvation free energies in GTRC
water near coexistence in both the small and large solute regimes are smaller in magnitude than those
in SPC/E water. However it exhibits essentially the same crossover radius as the full SPC/E model
and scales with solute surface area for large solutes. The behavior of ∆G below the crossover radius
can be understood from our previous results for the bulk structure of  the GTRC model near
coexistence [17]. The bulk coexistence density is close to that of  ice and the hydrogen bond network
has a more ordered tetrahedral structure that can more readily accommodate the formation of  a
cavity than is the case for SPC/E water.

Although the solvation free energies of  apolar solutes in water and in the LJ fluid exhibit
qualitatively similar crossover behavior, they differ in one important respect: the length scale at which
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the crossover in solvation behavior occurs. For the LJ fluid, the crossover radius is approximately
equal to the diameter of  a solvent particle. At this solute size, the unbalanced forces from the LJ
attractions of  the bulk region become large enough to “pull” particles away from the solute surface,
leading to drying.

Although unbalanced LJ forces also exist when apolar particles of  similar size are solvated by
water, the possible disruption of  strong local hydrogen bonds between interfacial water molecules
dominates the energetics, and the crossover occurs only when water is not able to maintain this
network. This leads to an estimate for the crossover radius, RC ≈ 5 Å, almost twice the diameter of  a
water molecule (2.75 Å) and significantly larger than that found in a LJ fluid. As shown above,
hydrophobic solvation in GTRC water near coexistence also displays a crossover in its scaling
behavior at a value of RC essentially the same as that of  the full SPC/E model. Because GTRC water
accounts only for the hydrogen bond network, we can conclusively say that the crossover in solvation
behavior is determined by the hydrogen bond network of  water alone, occurring when the solute size
is increased to a point beyond which it is impossible for this network to remain intact, consistent with
the original arguments of  Stillinger [18].

Given the importance of  the hydrogen bond network for small scale solvation in water, how can
we rationalize the success of  the LCW theory [19] and related lattice models incorporating similar
physics [47, 59], which lack an explicit description of  hydrogen bonds? These theories correctly
describe the small scale physics driven by Gaussian density fluctuations in the bulk solvent and the
large scale physics dominated by the formation of  a vapor-like interface around a large repulsive
solute. Effective parameters controlling the transition between the two regimes are fit to
experimental data for each particular solvent.

The key experimental parameters determining the transition length scale in the LCW theory are the
liquid-vapor surface tension, and the bulk density and compressibility. The small compressibility and
large surface tension of  water compared to a LJ fluid implicitly accounts for the strength of  the
hydrogen bond network in bulk water and the difficulty of  disrupting it by interface formation for
large solutes. This allows the LCW theory to qualitatively describe the different transition length
scales in both water and a LJ fluid [52] using the same basic framework. But LCW theory uses mean
field ideas and square gradient and other approximations, and errors are seen in its detailed
predictions for certain other properties like the interface width [52]. More detailed approaches
describing structure and fluctuations in both small and large length scale regimes are needed for
quantitative calculations.

More recent work by Rajamani, Truskett, and Garde [60] has clarified the relation between bulk
thermodynamics and the crossover radius. They suggested that the crossover radius is proportional
to the Egelstaff-Widom length scale lEW = γκT , the product of  the liquid-vapor surface tension γ
and the isothermal compressibility κT [61]. Quantitative agreement can be achieved by using a
microscopic compressibility that depends on the solute volume rather than the long wavelength bulk
compressibility in conjunction with the solute-water interfacial tension to estimate the crossover
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radius RC .
A simple but stringent test of  this idea is to compare the Egelstaff-Widom length scale of  GTRC

water near liquid-vapor coexistence to that of  SPC/E water. As discussed above, the crossover radius
in GTRC water is essentially the same as in SPC/E water. This is easily rationalized from our
microscopic understanding of  the very similar behavior of  the hydrogen bond network around the
solute in GTRC and SPC/E water. If  this simple physics is reflected in the Egelstaff-Widom length
scale, this too should be nearly the same although both the surface tension and bulk compressibility
differ considerably in the two models.

Indeed, the compressibility κGTRC
T of  GTRC water at T = 300 K and a pressure of  1 atm is

0.087 katm−1, roughly a factor of  two larger than that of  SPC/E at the same state point,
0.045 katm−1, while the surface tension of  the GTRC model γGTRC ≈ 27 mN/m, is about half  of
that of  the SPC/E model γSPC/E ≈ 54.7 mN/m. Here the value for SPC/E water was taken from
the work of  Sedlmeier and Netz [62] and the surface tension of  GTRC water was estimated by
extrapolating the solvation free energies ∆G̃(RHS) presented in Section V to the limit RHS → ∞.
Thus, the Egelstaff-Widom length scales of  SPC/E and GTRC water are nearly equal,
l
SPC/E
EW = 0.24 Å and lGTRC

EW = 0.23 Å, respectively, as expected.

3.6 Entropy convergence is a consequence of  the hydrogen bond network

The temperature dependence of  hydrophobic hydration also displays features distinct from solvation
in typical van der Waals liquids. Specifically, hydration free energies ∆G of  small apolar particles
increase with increasing temperature along a significant portion of  the coexistence curve until a
maximum is reached. Above this temperature, free energies of  solvation decrease with increasing
temperature, a behavior typical of  most fluids. Associated with this region of  anomalous solvation is
the phenomenon of entropy convergence, in which the hydration entropies, ∆S = −(∂∆G/∂T )P ,
intersect near a temperature of 400 K for a large range of  solute sizes, although the location of  the
hydration free energy maximum varies somewhat with solute size. Analogous to the discussion of  the
crossover length scale, the explanation of  entropy convergence typically uses thermodynamic
arguments, citing the small and nearly constant compressibility of  water along the liquid-vapor
coexistence line, relative to organic solvents [63, 64, 65], although explanations exist that do not hinge
on the relative incompressibility of  bulk water [66].

In this section, we show that entropy convergence in water arises from the hydrogen bond network
through its impact on bulk thermodynamics by studying the temperature dependence of  hard sphere
solvation in the SPC/E and GTRC water models near liquid-vapor coexistence. Simulations of  bulk
SPC/E and GTRC water were carried out at a pressure of  1 atm and temperatures ranging from
275K–500K and 225K–425K, respectively. Hard sphere solvation free energies in the small solute
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Figure 3.5: Hard sphere solvation free energy ∆G per unit solute volume VS as a function of tem-
perature in (a) SPC/E and (b) GTRC water. The corresponding entropies of solvation ∆S as a func-
tion of T are shown in (c) and (d), respectively. Hard sphere radii are indicated in the legend. Sol-
vation free energies as a function of solute size for T = 300 K, 325 K, 350 K, 375 K, and 400 K are
shown in the insets of (c) and (d) for the SPC/E and GTRC models, respectively. The arrows point
in the direction of increasing temperature.
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regime were determined by assuming Gaussian bulk density fluctuations [63, 64, 67],

∆G ≈ kBTρ
2
B(T )V

2
S

2σVS
(T )

+
kBT

2
ln [2πσVS

(T )] , (3.9)

where σVS
= ⟨(δN)2⟩VS

is the mean squared fluctuation in the number of  molecules N in a
solute-sized probe volume VS , with δN = N − ⟨N⟩VS

, and we consider the volume VS = 4πR3
HS/3

of  a spherical solute of  radius RHS herein. These solvation free energies were then fit to
∆G(T ) = a+ bT − cT 2, and are plotted as lines in Figures 3.5a and 3.5b. Solvation entropies were
determined from the negative derivative of  these fits, and are shown in Figures 3.5c and 3.5d.

The temperature dependence of  hard sphere solvation is qualitatively similar in both SPC/E and
GTRC water. In fact, entropy convergence is observed in the GTRC model, albeit at a convergence
temperature T̃ approximately 100 K less than the convergence temperature in SPC/E water;
T̃SPC/E = 387± 8 K and T̃GTRC = 291± 7 K, obtained from linear fitting of ∆S as a function of  the
heat capacity of  solvation, ∆CP (T ) = T (∂∆S/∂T )P , for several temperatures [65]. Despite this
quantitative distinction, the fact that the minimal reference network of  GTRC water captures the
phenomena of  entropy convergence explicitly demonstrates that this signature of  hydrophobic
hydration is directly related to the energetics of  the hydrogen bond network over a wide range of
temperatures.

Previous work has shown that the logarithmic term in Equation 3.9 has merely a secondary effect
on entropy convergence, shifting T̃ to somewhat lower values and ∆S(T̃ ) from zero to negative
values [63]. Therefore, in order to obtain a qualitative, microscopic explanation for entropy
convergence, we can neglect this term in the Gaussian approximation for the free energy, and write
the solvation entropy as

∆S ≈ −
(
kBV

2
S

2σVS

)
ρ2B(T ) [1− 2TαP (T )] , (3.10)

where αP = −(∂ ln ρB/∂T )P is the thermal expansion coefficient at constant pressure, which was
determined by fitting the bulk densities to Laurent polynomials [36]. Here we have also assumed that
the temperature dependence of  the variance σVS

can be neglected, as has been previously
established [63]. Thus within the accuracy of  Equation 3.10, entropy convergence is seen for
∆S(T̃ ) = 0, and an estimate of  the convergence temperature can be obtained from the intersection
of αP (T ) and (2T )−1. The convergence temperatures obtained for the SPC/E and GTRC models
from Equation 3.10 are roughly 420 K and 330 K, respectively, in reasonably good agreement with
the results presented above, although T̃ will always be overestimated in this approximation.
Nonetheless, the difference between the convergence temperatures of  the two models is
quantitatively captured by this estimation, indicating that additional T -dependences arising in ∆G are
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Figure 3.6: Thermal expansion coefficient multiplied by twice the temperature (left axis, closed
symbols) and average number of hydrogen bonds per water molecule (right axis, open symbols) for
SPC/E and GTRC water.
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similar in the two models, and these have been discussed in detail elsewhere [63, 65].
In this simplified Gaussian framework the behavior of αP (T ) plays a key role in entropy

convergence. In the case of  SPC/E water, the thermal expansion coefficient vanishes at the
temperature of  maximum density near 248 K [17, 36]. As shown in Figure 3.6, 2TαP (T ) then
increases with increasing temperature but remains less than one until about 420 K, where entropy
convergence is predicted to occur. The thermal expansion coefficient of  GTRC water behaves in a
qualitatively similar manner with 2TαP (T ) remaining less than one until about 330K, although
αP (T ) is never negative, because this model lacks a density maximum near liquid-vapor
coexistence [17]. The behavior of  the thermal expansion coefficient is a direct consequence of  the
energetics of  the H-bond network in both models. At ambient temperatures, the average number of
hydrogen bonds per molecule approaches four in both SPC/E and GTRC water [17]. With
increasing temperature, thermal fluctuations increasingly disrupt the entropically unfavorable
hydrogen bond network in both models (Figure 3.6), which leads to an increase in the thermal
expansion coefficient. However, the lower density of  GTRC water permits more fluctuations as the
temperature is increased, consistent with its larger compressibility and a more rapid increase in
αP (T ), leading to a lower convergence temperature.

We also determined the temperature dependence of  large solute solvation free energies following
the description in the previous section. After the length scale transition, solvation is dominated by
interfacial physics. As evidenced by the insets in Figure 3.5, hard sphere solvation free energies in this
regime decrease with increasing temperature for both models, following the T -dependence of  the
surface tension, just as is the case for LJ solvation.

3.7 Long ranged interactions and the size dependence of  hydrophobic association

In this section, we examine the role of  the various short and long ranged forces in the
thermodynamics of  hydrophobic association. In order to accomplish this task, we consider the
association of  pairs of  spherical solutes, one pair in which both solutes are in the small-scale regime,
while the other pair consists of  two large solutes. We first examine the free energy as a function of
solute-solute distance, R,

βW (R) = − lnP (R), (3.11)

where P (R) was obtained by umbrella sampling with the harmonic biasing potential

Ubias(R) =
κ

2
(R−R∗)2 , (3.12)

R∗ is the desired value of R, and κ is a force constant tuned to achieve adequate overlap between
neighboring windows. The probability distribution P (R) was then constructed from the set of  biased
simulations using the multistate Bennet acceptance ratio method (MBAR) [68].
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Figure 3.7: Potential of mean force, W (r), between two UA methane particles in SPC/E, GT, and
GTRC water.

We first focus on hydrophobic association in the small scale regime, and consider the association
of  two united atom (UA) methane models, which are simply LJ particles with length and energy
parameters of σMe−Me = 3.73 Å and ϵMe−Me = 1.234 kJ/mol, respectively [69]. Methane-water
interactions were obtained from Lorentz-Berthelot mixing rules.

The potentials of  mean force, W (R), shown in Figure 3.7 for the association of  two UA methanes
are nearly identical for all water models under consideration. Therefore, not only does the hydrogen
bond network dictate the solvation structure around individual small solutes, but also the association
of  solutes in this length scale regime, as expected from the results presented in the previous sections.

We now consider the association of  two large C60 fullerene molecules in the various models of
water. Each C60 is represented as a single site using the coarse-graining procedure prescribed by
Girifalco [70, 71], such that the fullerene-fullerene interaction is given by

UFF(R) = −α
[

1

s(s− 1)3
+

1

s(s+ 1)3
− 2

s4

]
+ ζ

[
1

s(s− 1)9
+

1

s(s+ 1)9
− 2

s10

]
, (3.13)

where α = 4.4775 kJ/mol, ζ = 0.0081 kJ/mol, s = R/2η, and η = 3.55 Å. The C60-water
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Figure 3.8: Solvent-induced potential of mean force, Wsolv(R), between two (a) purely repulsive and
(b) attractive coarse-grained C60 particles in SPC/E, GT, and GTRC water. Insets in (a) and (b)
show the corresponding nonuniform densities around a single coarse-grained C60 immersed in each
water model. The gray curve in (b) is the GTRC PMF from panel (a).

interaction potential is
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,(3.14)

where N = 60, σwF = 3.19 Å, and ϵwF = 0.392 kJ/mol. Previous work has shown that this
coarse-grained water-C60 interaction provides a very good representation of  the solvation structure
in the corresponding atomically-detailed water-C60 system [71].

The water-C60 interaction potential UwF(r) leads to a hydrophilic particle due to the high density
of  carbon sites on the surface of  the C60 molecule. Therefore, we also consider a hydrophobic
particle obtained by using only the repulsive water-C60 and C60-C60 forces. This is obtained by
performing a WCA-like separation of  the potentials UFF and UwF to obtain the corresponding purely
repulsive potentials U0,FF and U0,wF, as detailed above for Usw.

We further separate the potential of  mean force as W (R) = Wvac(R) +Wsolv(R), where Wvac(R)
and Wsolv(R) are the vacuum and solvent-induced portions of  the PMF, respectively, focusing on the
latter contribution herein. The solvent-induced PMFs between purely repulsive C60 particles in the
SPC/E and GT water models, shown in Figure 3.8a, are indicative of  the hydrophobic effect; the
association of  two large apolar particles in water is barrierless, although the free energy of  association
is slightly lower in GT water due to its lower surface tension. Previous work has shown that the
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collapse of  two extended hydrophobic surfaces proceeds by the formation of  a vapor tube [72, 73], in
which solvent molecules are evacuated from a cylindrical region between the two hydrophobes, and
we will show below that the association of  two repulsive fullerenes also occurs by this mechanism.

In GTRC water, however, the PMF Wsolv(R) displays a slight barrier at R ≈ 15 Å, and another
significantly higher barrier at R ≈ 12 Å, as shown in Figure 3.8a. Because the C60-C60 distance does
not explicitly account for changes in the behavior of  the aqueous solvent, it is not a good reaction
coordinate to study the association of  two large hydrophobes on its own [72, 73] and W (R) cannot
provide an explanation for the appearance of  this barrier in Wsolv(R).

To understand hydrophobic association in GT and GTRC water, we calculate the free energy as a
function of  the C60-C60 distance R and the density ρv of  water in a cylindrical volume of  radius
3.75 Å between the particles. This two-dimensional free energy landscape is given by
βW (R, ρv) = − lnP (R, ρv), where P (R, ρv) was calculated using the indirect umbrella sampling
method [74] to bias the number of  particles in the volume v. The harmonic potential in
Equation 3.12 was used to bias R. Again MBAR was used to reconstruct the probability distribution
from these biased simulations [68].

The free energy surface shown in the top panel of  Figure 3.9 indicates that hydrophobic collapse in
GT water (or SPC/E water) is indeed driven by the barrier-less formation of  a vapor tube [72, 73] at a
C60-C60 distance between 14 and 15 Å. Hydrophobic collapse in GTRC water, on the other hand,
does not follow this mechanism because capillary evaporation in the inter-fullerene region has been
suppressed by the removal of  LJ attractions in the solvent. This is consistent with the lack of  drying
at the interface of  a single repulsive solute, as evidenced by the nonuniform densities shown in the
inset of  Figure 3.8a and would be anticipated from the results presented in Section IV.

Instead, the free energy minimum in GTRC water (for a specific value of R) remains at liquid-like
densities as the C60-C60 distance is decreased, until the water molecules cannot physically remain
between the fullerene particles due to repulsive core overlap near R ≈ 12 Å. Only at this point are
the solvation shell water molecules in the inter-fullerene region expelled. This expulsion of  water
molecules in the observation volume causes the large free energy barrier observed at the same
inter-fullerene distance in the one-dimensional Wsolv(R) for GTRC water shown in Figure 3.8a.

Instead of  artificially suppressing capillary evaporation between large hydrophobes by removal of
solvent LJ attractions as in GTRC water, we can directly counteract the unbalanced LJ interfacial
forces leading to evaporation in the GT or full water models by making the solutes sufficiently
hydrophilic. LMF theory would predict very similar behavior for these two systems. This is
accomplished by using the full UFF and UwF potentials to describe fullerene-fullerene and
water-fullerene interactions, respectively. Inclusion of  the water-C60 attractive interactions leads to an
almost perfect cancellation of  these unbalanced forces, as evidenced by the good agreement of  the
SPC/E and GT nonuniform densities with that of  the GTRC model, shown in the inset of
Figure 3.8b.
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Figure 3.9: Free energy as a function of C60-C60 distance, R, and density of water in the observa-
tion volume v with respect to that in the bulk, ρv/ρB, for the association of two hydrophobic fullerene
particles in (a) GT and (b) GTRC water models. Contour lines are spaced in increments of kBT .

These strong solute-water attractions, arising from the high surface density of  carbon atoms,
render the C60 molecule hydrophilic, and the associated solvent-induced PMFs are repulsive for all
distances. This indicates that water opposes the association of  two such particles, in accord with
previous results [75]. Because of  the effective hydrophilicity of  the particles, capillary evaporation
between the particles does not occur, and Wsolv(R) is the same for all three models for R ≥ 12 Å. At
smaller separations water is forcibly expelled from the inter-fullerene region due to overlap with the
repulsive cores of  the solutes and then differences arise due to the differing pressure of  the systems.

The two-dimensional PMF W (R, ρv) was also calculated for the case of  hydrophilic fullerene
particles in GT water, and is shown in Figure 3.10. This PMF is qualitatively very similar to that
shown for hydrophobic collapse in GTRC water in Figure 3.9b as expected. As R is decreased, the
free energy minimum as a function of ρv remains in regions of  liquid-like densities. It is not until very
small R, less than 12 Å, that W (R, ρv) develops a minimum at low ρv , indicating a global free energy
minimum at the contact state. In fact, the solvent induced PMF Wsolv(R) between hydrophobic
solutes in GTRC water is nearly identical to the PMFs obtained between hydrophilic solutes in all
models until water is expelled from the inter-fullerene region, R < 12 Å, as illustrated by the curve
labeled ‘GTRC-Hphob’ in Figure 3.8b. In contrast to what is found for the association of  large
hydrophobic particles, the solvent opposes association and the contact state is stabilized by the large
solute-solute attractions between hydrophilic fullerenes.
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Figure 3.10: Free energy as a function of C60-C60 distance, R, and density density of water in the
observation volume v with respect to that in the bulk, ρv/ρB, for the association of two hydrophilic
fullerene particles in GT water. Contour lines are spaced in increments of kBT .

3.8 Conclusions

We have used short ranged variants of  the SPC/E water model [17] in conjunction with LMF theory
to examine the crossover in the behavior of  hydrophobic hydration with increasing solute size. While
small scale solvation is determined exclusively by the local structure of  water, i.e. the hydrogen bond
network, long ranged interactions are important for the accurate description of  the hydration of  large
apolar solutes. Dispersion interactions lead to the phenomena of  drying at extended hydrophobic
interfaces, while long ranged dipolar interactions are essential for the description of  the orientational
ordering of  water in the vicinity of  a large solute, as well as for interfacial electrostatic properties.

The truncated GT and GTRC water models also provide insight into hydrophobic interactions
between solutes in the small and large length scale regimes. The local structure of  water, dictated by
the hydrogen bond network, is found to govern the association of  two small scale solutes, a concept
which has been successfully exploited to provide a theoretical framework for describing hydrophobic
hydration and association at small length scales [67]. Moreover, previous work has shown that
coarse-grained models, whereby water molecules interact via a single spherically symmetric pairwise
potential, can reproduce the thermodynamics of  association of  two methanes [76, 77]. From the
results presented here, it is not surprising that such coarse-grained models can capture features of
small scale hydrophobicity, since these models also describe the bulk structure of  water with near
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quantitative accuracy.
The association of  two large scale hydrophobes involves the formation of  an inter-solute vapor

tube, and the unbalanced forces arising from water-water LJ attractions are found to be of  the utmost
importance for this mechanism of  hydrophobic association. In this regime the coarse-grained water
models will fail completely. Cancellation of  the effects of  interfacial unbalanced forces, either by
explicit removal of  solvent-solvent LJ attractions (as in GTRC water) or by addition of  large
solute-water attractions that counterbalance these forces, suppresses capillary evaporation between
two large solutes. As a result the solute surface is wet by the aqueous solvent, and free energy barriers
to the association of  two large hydrophilic solutes exist. In all these cases comparison of  results in the
full model with those from the short-ranged GT and GTRC water models provides a simple and
physically suggestive way to disentangle the effects of  longer ranged dispersive and Coulomb
interactions from properties of  the local hydrogen bond network.
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Lo, all in silicence, all in order stand
And mighty folios first, a lordly band;
Then quartos, their well-order’d ranks maintain,
And light octavos fill a spacious plain:
See yonder, ranged in more frequent rows,
A humbler band of  duodecimos;

George Crabbe 4
On Molecular Interactions and the Response to

Nanoscale Broken Symmetries I: Cavity
Solvation

4.1 Introduction

The solvation of  ions in water presents many conceptual and computational challenges to current
models of  ion and water interactions. The solvation free energy is usually described using a two

step process [78, 79, 80, 81, 82]: i) the formation of  a cavity in water that accommodates the neutral
ion core along with its associated ion-water dispersion interactions and ii) the additional free energy
resulting from charging the core to the full charge of  the ion. The simplest Born model treats water
outside the cavity as a continuum dielectric that responds linearly to the inserted charge, and predicts
that the resulting electrostatic free energy contribution is independent of  the sign of  the charge.

This disagrees with experiment and workers have long recognized that nonlinear electrostatic
effects induced by the initial insertion of  the ion core must be taken into account. These
nonlinearities arise from the molecular nature of  the system, since steric effects from inserting even a
neutral ion core can strongly perturb the number and arrangements of  local hydrogen bonds and
orientations of  molecular dipoles and other multipoles.

The fixed cavity or ion core itself  breaks the translational symmetry of  the bulk solvent and
induces molecular scale interfaces between the solute and solvent. The nonuniform charge density
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induced by a neutral solute can be generally characterized as a locally broken charge symmetry, and
will typically generate an electrostatic potential difference between the region near the solute and in
the bulk solvent. Accounting for this potential difference as the solute itself  is further charged
represents an important correction to the Born theory. Broken charge symmetry is quite general and
can be seen in many other charged systems with local correlations on the scale of  the solute size,
exemplified by the insertion of  a hard sphere solute into a size asymmetric primitive model of  an
ionic solvent, as we will discuss later.

But water and other molecular solvents can also exhibit broken angular symmetry from
non-spherical molecular cores and the asymmetric intramolecular charge distribution. Using quantum
chemistry results, Agmon has suggested that regions with a net effective positive charge in a water
molecule are localized near the distinct hydrogen sites, while the associated negative charge is
smeared nearly uniformly along a “negativity track” between the classical lone pair sites [83]. Broken
angular symmetry from any source would give rise to differences between donor and acceptor
hydrogen bonds even in bulk water, and would be expected to have more dramatic effects on the
molecular interfaces involved in solvation of  neutral solutes, with further important consequences for
charged solutes.

In this chapter we study the structural and electrostatic consequences of  the various broken
symmetries that arise from inserting the simplest model of  an uncharged ion core, a hard sphere
solute of  varying radius RHS, into water as described by two classical water models, SPC/E and
TIP5P, and by state-of  the art quantum density functional calculations 1. As we will show, the broken
symmetries from hard sphere solvation generate special configurations that are particularly sensitive
to small differences between donor and acceptor hydrogen bonds and to local variations in the
induced charge density. This system thus provides a stringent test of  classical water models in a
physically important application where accurate quantum calculations can be carried out to assess
their predictions.

4.2 The Negativity Track

The SPC/E and TIP5P models differ qualitatively in their description of  donor and acceptor
hydrogen bonds. Hydrogen bonds in almost all classical water models arise from “frustrated charge
pairing”, where an effective positive charge on a donor hydrogen site of  one molecule tries to get
close to a negatively charged acceptor site on a neighboring molecule, as illustrated in Figure 2.2 of
Chapter 2. This strong electrostatic attractive force is opposed by overlap of  the repulsive
Lennard-Jones (LJ) cores centered on the oxygen sites and the presence of  other hydrogen sites in the

1All quantum simulations and subsequent analysis of  their output were performed by Christopher Mundy, Marcel Baer,
and Gregory Schenter at Pacific Northwest National Laboratory (PNNL).
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Figure 4.1: (a) Local coordinate system used to compute water dimer interaction energies as a func-
tion of oxygen-oxygen distance rOO along the z-axis and as the water at the origin is rotated by an
angle θ, φ, or ψ around the x-, y-, or z-axis, respectively. Rotation about the x-axis by the angle θ
corresponds moving along the proposed ‘negativity track’ of Agmon [83]. Dimer interaction energies
for are shown for both (b-d) SPC/E and (e-g) TIP5P water models. Note that the contours are not
equally spaced in (b), (c), (e), and (f), but spaced by smaller increments near the energy minima. (h)
The energy as a function of the angle of rotation about the x-axis (i.e. along the ‘negativity track’)
for the H-bond distance rOO = 2.75 Å is also shown for both models, where the energies have been
shifted such that the minimum is located at E = 0. TIP5P dimer configurations at the relevant ex-
trema are also shown. All energies are in kJ/mol.
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acceptor molecule. In the SPC/E model all the negative charge is placed on the central oxygen site
while in TIP5P negative point charges are placed on explicit “lone-pair” sites displaced tetrahedrally
outward from the oxygen site.

Because of  the more symmetric treatment of  positive and negative charges, we would expect much
smaller differences in properties of  donor and acceptor hydrogen bonds for a typical molecule in
bulk TIP5P water as compared to SPC/E water. In this sense TIP5P is reminiscent of  the early BNS
water model, with its completely symmetric treatment of  tetrahedral charge sites [28], or of  the purely
tetrahedral mW model [84], which makes no distinction between donor and acceptor bonds. Charge
pairing to distinct negative sites in TIP5P should also yield hydrogen bonds with reduced angular
fluctuations when compared to those in SPC/E and related three and four site water models, where
all the negative charge is placed on a single site located much further inside the LJ core. This permits
greater flexibility in accepting hydrogen bonds from neighboring molecules in the SPC/E model,
effectively generating a classical version of  the “negativity track” discussed by Agmon [83].

A simple demonstration of  this effect is to compute the H-bonding energy E(r,Ω) of  a classical
water dimer as a function of  the water-water distance r and orientation Ω. We consider the
oxygen-oxygen distance as one reaction coordinate along which we compute the energy. The
orientational dependence of  the H-bonding energy is described by rotating one water about the local
x-, y-, and z-axes illustrated in Figure 4.1a by the angles of  rotation θ, φ, and ψ, respectively, such
that Ω = (θ, φ, ψ). In Chapters 2 and 3, we discuss the use of  GTRC truncations of  classical models,
and how these truncated models define a minimal reference system that describes the H-bond
network. Therefore, the interaction energies for the SPC/E and TIP5P dimers shown in Figures 4.1b
and 4.1c are those of  the GTRC variants of  each model, such that the local interactions leading to
H-bond formation are disentangled from long ranged dispersion and multipolar forces.

Although the classical representation of  lone pair electron density influences all energy landscapes
in Figure 4.1, the effects of  the negativity track are most prevelant in E(r, θ). At the H-bond
distance, r = 2.75 Å, the SPC/E dimer energy displays a single energy minimum, located at a
rotation angle of θ = 0◦, as shown in Figures 4.1b and 4.1h. This orientation corresponds to H-bond
formation at the virtual trigonal site of  the acceptor oxygen, and this orientation is also shown in
Figure 4.1a. Of  particular importance is the lack of  an energetic barrier in E(r, θ) as θ is changed in
the SPC/E dimer, indicating that the donor hydrogen can readily ‘slide’ along the classical negativity
track of  the acceptor oxygen site.

The dimer H-bond energies E(r,Ω) obtained for the TIP5P model strongly contrast those of  the
SPC/E model. As shown in Figures 4.1e and 4.1h, the TIP5P dimer energy (evaluated using the
GTRC truncation scheme) has a barrier of  roughly 4 kcal/mol (6.7 kBT at T = 300 K) located at
r = 2.75 Å and θ = 0◦, due to the absence of  any negative charge at the trigonal site. Instead,
energetic minima are located at θ ≈ ±45◦, in accord with the location of  the lone pair sites.
Therefore, the donor hydrogen cannot move freely from one lone pair site to another in the TIP5P
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(a) (b) (c)

Figure 4.2: Isosurfaces of the three dimensional oxygen (red) and hydrogen (white) densities around
a central water in the (a) SPC/E and (b) TIP5P models at T = 300 K and P = 1 atm. Isosurfaces
are drawn at twice the bulk density of each species and TIP5P lone pair sites are not shown for ease
of comparison to SPC/E. (c) Spherically symmetric site-site pair distribution functions g(r) in both
water models. Hydrogen-hydrogen and oxygen-hydrogen distributions are shifted vertically by 0.5 and
1, respectively.

model, but must overcome the energetic barrier at θ = 0◦ through thermal fluctuations2 , and TIP5P
water is not considered to have a classical negativity track.

In addition, the presence of  such energetic barriers to rotation will influence local H-bond
dynamics [83], but this is not our focus. In this work, we concentrate on the consequences of  the
proposed negativity track on the structure and thermodynamics of  aqueous solutions. In the bulk,
the influence of  the negativity track can be observed in the three dimensional density distribution of
oxygen and hydrogen sites around a central water, and isosurfaces of  these ρ(r) distributions are
shown in Figure 4.2 for both SPC/E and TIP5P water. In SPC/E water, a continuous lobe of
hydrogen density and an accompanying lobe of  oxygen density are found around the oxygen atom of
the central water, consistent with the ability of  the H-bond donating water to move freely along the
acceptor site in this model. On the other hand, TIP5P shows two distinct regions of  high density at
the location of  the lone pair sites and a lack of  density at the trigonal site. The location of  this density
deficiency is also consistent with that of  the energetic barrier to rotation discussed above, illustrating
that the form of E(r, θ) can have subtle effects on the bulk structure.

2In the bulk, cooperative effects from neighboring water molecules should reduce the size of  the barrier. Nonetheless,
a barrier to rotation is still expected to exist, as supported by the results presented in Figure 4.2 and the discussion in the
text.
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However, the differences in the behavior of ρ(r) between SPC/E and TIP5P water have little
influence on other structural and thermodynamic properties of  the liquids. Indeed, the spherically
symmetric pair distribution functions g(r) of  each model shown in Figure 4.2c agree quite well. The
bulk dynamic and thermodynamic properties of  SPC/E and TIP5P are also in relatively good
agreement with each other and with other water models, especially after appropriate scaling is
performed [85].

Unlike what is found in the bulk, the subsequent sections of  this chapter demonstrate that the way
in which lone pairs are modeled does have a significant influence on the structure and
thermodynamics of nonuniform systems. In particular, the solvation of  model spherical solutes is
significantly affected by the presence or absence of  the donor-acceptor asymmetries that lead to the
concept of  a classical negativity track.

4.3 Structural Response to Cavities

The various effective representations of  physical lone pair electrons in classical water models lead to
qualitatively different results for hard sphere solvation and the thermodynamics of  charging these
model ionic cores, as we now show in this section. The donor/acceptor asymmetries that appear are
not readily apparent in common measures of  interfacial structure like the nonuniform densities
shown in Figure 4.3, which are remarkably similar when water is modeled with the SPC/E or TIP5P
potential for all cavity sizes under study. The only differences arise in the large solute regime and are
due to larger unbalanced LJ forces in the TIP5P model than those in SPC/E because of  a deeper
attractive well in the TIP5P LJ potential.

However, donor/acceptor asymmetries are manifested in the orientational structure of  water
around solutes, and therefore the manner in which the hydrogen bond network is maintained in the
interfacial region. The orientation of  a water molecule relative to the solute can be uniquely defined
by two angular coordinates [86], θµ and ϕ. The first of  which is the angle formed by the vector
between the water oxygen and the center of  the solute, r⃗OS, and the dipole moment vector of  the
water molecule, µ⃗, where r⃗OS points in the direction of  the solute. The angle ϕ is obtained by first
defining a local coordinate frame in which µ⃗ is the z-axis and the normal to the H-O-H plane is the
x-axis, such that the y-axis will point in the direction of  the H-H vector. The oxygen-solute vector
r⃗OS is then projected onto the xy-plane of  the local frame, and ϕ is defined as the angle between this
projection and the x-axis of  the local frame. Due to the symmetry of  the water molecule, ϕ can be
made to satisfy 0 ≤ ϕ ≤ 90◦.

Joint probability distributions P (θµ, ϕ) for the classical SPC/E and TIP5P models, as well as DFT
results obtained with both the PBE and BLYP functionals are shown in Figure 4.4 for water
molecules within 1 Å of  the surface of  a hard sphere with a radius of RHS = 4 Å, which is close to
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Figure 4.3: Nonuniform singlet densities for SPC/E and TIP5P water around cavities with radii
RHS = 2, 4, 6, and 8 Å.

the crossover radius RC but still in the small scale regime. The two dominant orientations both
correspond to a water molecule pointing one H-bonding group directly toward the bulk, while the
other three H-bonds continue around the solute. In the case of  SPC/E water, Figure 4.4a, pointing
the donor hydrogen sites around the solute is preferred, such that an acceptor group is pointed into
the bulk, indicated by the large peak at low ϕ labeled B. However, the orientation obtained upon
interchange of  donor/acceptor groups, orientation B̃, is much less populated. In this
entropy-dominated, small solute regime, differences in the flexibility of  the H-bond networks of
SPC/E and TIP5P water become apparent as the solvation entropy is maximized. The tendency of
SPC/E water to point acceptor sites toward the bulk is a direct result of  this maximization, and leads
to an increased flexibility in the H-bond network formed between the first and second solvation
shells.

Angular asymmetry is virtually absent in the TIP5P model, and may even be expected, to the
extent that H-bond acceptors are represented in nearly the same fashion as donors in this potential.
Interestingly, the results obtained from both sets of  DFT simulations are also consistent with a nearly
symmetric representation of  donor and acceptor moieties, in stark contrast to what is expected from
previous ab initio studies that support the negativity track picture discussed by Agmon and others [83].
Further work is needed to discern the validity of  the negativity track picture, although our results do
not support this concept for hard sphere solvation.

Hydrogen bond configurations and the associated nonuniform charge density near the inserted
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ÃB

B̃

(b)

0 45 90 135 180

θµ

0

30

60

90

φ

(c)

45 90 135 180

θµ

(d)

Figure 4.4: Joint probability distributions P (θµ, ϕ) calculated for molecules within 1 Å of the surface
of the solute with RHS = 4 Å for the classical (a) SPC/E and (b) TIP5P water models, as well as the
corresponding distributions obtained from DFT-based simulations using the (c) BLYP and (d) PBE
functionals. Red indicates high probability, while blue corresponds to low probability. The specific
orientations discussed in the text and in Figure 4.5 are indicated in (b) by the dashed regions.
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Figure 4.5: Solute size dependence of the fractions of orientations α and α̃ in (a,c) SPC/E and (b,d)
TIP5P water models for (a,b) α = A and (c,d) α = B.

solute also have very interesting behavior as the solute radius is varied, with the most dramatic change
occurring at a crossover radius of RC ≈ 0.5 nm. Hydrogen bonds must be broken to accommodate
larger solutes, and the resulting molecular interface resembles the liquid-vapor interface of  water.
Both SPC/E and TIP5P give qualitatively similar descriptions of  the enthalpically driven length scale
transition and the interfacial properties of  large solutes, but smaller solutes can be accommodated
into the bulk hydrogen bond network with mainly an entropic penalty from constrained fluctuations
near the solute. Here subtle differences in the arrangements of  donor and acceptor bonds can play a
key role, especially near the length-scale transition.

The solute size-dependent orientational structure of  interfacial water is first examined by
classifying molecules according to their angular preferences, as indicated in Figure 4.4b. We focus on
the behavior of  each orientation α, as well as the corresponding orientations obtained by
interchanging the lone pair and hydrogen sites, α̃. The fraction xα(RHS) of  hydration shell waters of
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type α as a function of  solute size shown in Figure 4.5 reveals that distinct donor/acceptor
asymmetries emerge for solute sizes near RC in the case of  SPC/E water. In particular, a prominent
peak appears in xA(RHS) prior to the crossover radius, while xÃ(RHS) monotonically decays with
RHS. Similar asymmetries are observed for populations B and B̃, respectively, but with the respective
fractions peaking in the vicinity of RC .

The TIP5P potential, on the other hand, is much more symmetric with regard to interchange of
donor and acceptor sites (α and α̃) for all RHS; any small asymmetries are commensurate with the
slight differences between the lone pair and hydrogen sites. Transitions in the populations of A/Ã
and B/B̃ in TIP5P water occur at nearly the same solute radius as the analogous quantities in SPC/E
water, supporting the idea that the qualitative features of  the length-scale transition are captured by
both potentials, while the specific details surrounding the crossover differ.

4.4 Thermodynamic Consequences: Ion Solvation and the Cavity Potential

An immediate consequence of  the donor/acceptor angular asymmetries and the corresponding
broken charge symmetries found here is the nature of  the electrostatic potential in the vicinity of  the
water-solute interface. Subtle differences in orientational structure can lead to drastic changes in the
value of  the mean electrostatic potential at the center of  the cavity, termed the cavity potential herein.
This quantity is crucial to theoretical estimates of  the charging free energy of  a neutral core,
traditionally the second step in obtaining ion solvation free energies. However, there is still no
consensus as to exactly what electrostatic potential is appropriate for predicting ion solvation free
energies.

Previous work from Ashbaugh [87] sought to modify the classical expressions for the charging free
energy ∆µQ by a term linear in the ionic charge Q in order to account for the experimentally
observed asymmetries in ion solvation free energies, wherein anions and cations are solvated more
and less readily, respectively, than predicted by the symmetric Born model. This work implied a
modification of  the Born model for ionic charging in a dielectric medium with permittivity ϵ of  the
form

∆µQ = Q
⟨
ϕA(0;R)

⟩
0
− Q2

2RB

(
1− 1

ϵ

)
, (4.1)

where RB is termed the Born radius and
⟨
ϕA(0;R)

⟩
0

is the value of  the electrostatic potential at the
center of  an uncharged core evaluated as an ensemble average over configurations R from a
simulation with periodic boundary conditions (PBCs) in all directions, as indicated by ⟨· · · ⟩0. It is
important to note that in this framework, the electrostatic potential is evaluated such that its value is
zero in the bulk liquid, and this convention is designated by the subscript “A.”

The classical Born equation is recovered when
⟨
ϕA(0;R)

⟩
0
= 0 in Equation 4.1. This

modification, which still treats RB as a free parameter, was able to account for the asymmetric nature
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of ∆µQ for large solutes with radii larger than 5–6 Å 3, but not completely for small core sizes. The
asymmetries observed for small ions were explained by Garde and coworkers [78], and later by
Bardhan et al. [79]. Because the harsh repulsive core of  the ion only excludes the oxygen site of  a
water molecule, hydrogen sites can get closer to the ion charge than the oxygen atom of  the same
molecule. Therefore, by adjusting RB independently for positive and negative ions, both works were
able to account for this type of  asymmetry, arising from the intramolecular charge asymmetries of  a
water molecule.

However, these advances were still unable to provide an adequate description of  solvation
processes involving ions. In particular, cavity potentials obtained from ab initio DFT simulations are
opposite in sign and roughly seven times larger in magnitude than those obtained from the classical
SPC/E model (+3.5 V versus -0.5 V). Therefore, quantum mechanics based models would predict
ion solvation free energies in qualitative disagreement with those from experiment and classical
simulations.

This was seemingly resolved by the two interface model of  Harder and Roux, which suggested that
the cavity potential should be referenced to the electrostatic potential of  the vapor phase by
performing a simulation with a liquid-vapor interface present [88]. In this case, the modified Born
model becomes

∆µQ = Q
⟨
ϕ(0;R)− ΦLV

⟩
0
− Q2

2RB

(
1− 1

ϵ

)
, (4.2)

where ΦLV is the electrostatic potential difference across a planar liquid-vapor (LV) interface, often
referred to as the surface potential. By subtracting ΦLV from

⟨
ϕ(0;R)

⟩
0
, simulation results obtained

in the presence and absence of  a LV interface were brought into agreement, and reasonable results
could be obtained from DFT simulations [89, 90]. In addition, dielectric continuum theory
predictions for the free energy of  moving an ion from the bulk to a LV interface by Baer et al. [91],
which are consistent with simulation data for the same process, produce a cavity potential that is
consistent with the two interface model. While these results seem to resolve the paradoxical
asymmetry associated with ion solvation, there are numerous problems associated with this approach.
Not the least of  which is that solvation calculations cannot be performed away from liquid-vapor
coexistence, indicating that ion solvation in general from the persepective of  the cavity potential is
still not completely understood. We seek to resolve this conundrum herein.

4.4.1 The Role of  the Bethe Potential

In order to fully understand the process of  charging an ionic core in a dielectric medium, we must
first begin with the uniform solvent itself. Previous approaches, from the Born model to the two

3It will be shown later in this chapter that this length scale corresponds to a transition from short ranged local interac-
tions dominating the cavity potential to long ranged electrostatics being paramount.

76



interface model, assume that the electrostatic potential of  the bulk liquid is arbitrary, and often taken
to be zero. At first glance this may seem reasonable, because the average charge density of  a uniform
dielectric is zero, and the electric field in the bulk also vanishes. However, this does not imply that the
average potential is zero; a constant potential will also produce a zero electric field. Accounting for
the effects of  this constant potential of  a bulk phase, termed the Bethe potential, is the key ingredient
to understanding ion solvation.

The Bethe potential is derived in Appendix B and is given by [92, 93]

ϕBethe = −4π

3
T = −2π

3

⟨
1

V

∫
drr2ρq(r;R)

⟩
B

, (4.3)

such that the integration is over the volume V of  the simulation cell,

T =
1

2

⟨
1

V

∫
drr2ρq(r;R)

⟩
B

(4.4)

is the trace of  the second moment tensor (also referred to as the primitive quadrupole moment
tensor) arising from the solvent charge density

ρq(r;R) =
NC∑
i=1

qiδ(r− ri(R)) (4.5)

in configuration R for the NC solvent charges, and ⟨· · · ⟩B indicates an ensemble average over
configurations R in the uniform, bulk system. Note that T , and therefore ϕBethe, is constant
throughout space and is a property of  the bulk. The Bethe potential can vary significantly between
different models of  the same molecule. In the case of  rigid, classical models, the trace of  the second
moment tensor T , and therefore ϕBethe, is proportional to the trace of  the primitive quadrupole
moment tensor of  a single molecule:

ϕBethe = −4π

3
ρB Tr {Qmol} , (4.6)

where ρB is the bulk density and Tr {Qmol} is the trace of  the primitive quadrupole tensor of  a single
molecule, Qmol. Equation 4.6 is derived in Appendix D. The quadrupole moments of  classical water
potentials are typically not parameterized when developing such models, and therefore they differ

77



significantly between the planar SPC/E model and the near tetrahedral TIP5P model 4, for example,
resulting in different values of ϕBethe for the two models. We can also expect that the ϕBethe of
quantum mechanics-based models, which include some representation of  nuclear and electronic
charges, will differ significantly from classical models, as supported by the large positive electrostatic
potential difference across a liquid vapor interface [94]. However, since solvation energies probe
changes induced by the solute, we may expect on very general grounds, and will see below, that ion
solvation energies do not depend on ϕBethe.

We now focus on the solvation free energy of  a single ion in a bulk fluid, as is typically estimated in
simulations. The system consists of  a cubic box with PBCs, and the model ion, composed of  a hard
core or cavity with a point charge at its center, fixed at the origin of  the simulation cell. As discussed
above, the free energy of  solvation can be written as ∆µ = ∆µcav +∆µQ, where ∆µcav is the free
energy of  inserting a cavity corresponding to the size of  the ion into the solvent and ∆µQ is the free
energy of  charging the cavity from zero to a charge Q. We concern ourselves with the latter quantity
herein.

In general, we cannot perform a simulation of  a non-neutral system, especially when using Ewald
summation [31] to handle the electrostatics in the periodic environment. In this case, when we charge
the ion from zero to Q, we must also turn on a neutralizing uniform background charge density from
zero to −Q, canceling the ion charge and maintaining neutrality at every step. The uniform
background penetrates the cavity and exerts no force on the ion. This seems to be the least intrusive
way to maintain neutrality in a finite system with PBCs while focusing mainly on properties of  the
ion. However, there are significant finite size effects due to the use of  Ewald summation with PBCs
that must also be taken into account [78, 80, 81, 95].

In order to obtain an expression for the free energy of  charging ∆µQ, we first define the
interaction energy Ψ(R) in configuration R between the point charge and the solvent, with the
preexisting cavity present, as

Ψ(R) =
∫
drQδ(r)ϕ(r;R) +

∫
dr
(
−Q
V

)
ϕ(r;R) = Qϕ(0;R)− Q

V

∫
drϕ(r;R), (4.7)

where V is the volume of  the central simulation cell and the charge densities of  the ion and the
background are Qδ(r) and −Q/V , respectively. The quantity

ϕ(r;R) =
∫
dr′
ρq(r′;R)
|r− r′|

(4.8)

4For SPC/E water, Tr
{
QSPC/E

mol

}
= r2OHqH, where rOH is the oxygen-hydrogen bond length and qH is the charge on a

hydrogen site. The analogous expressions for TIP5P water is Tr
{
QTIP5P

mol

}
= (r2OH−r2OL)qH, where rOL is the oxygen-lone

pair site bond length. Note that the bond lengths and charges are also not equivalent in the two models and quadrupoles
are obtained using the oxygen site as the origin of  the local coordinate system.
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is the electrostatic potential arising from the solvent, such that ϕ(0;R) is the value of  the electrostatic
potential at the origin (the location of  the point charge) in configuration R.

In general, the average electrostatic potential
⟨
ϕ(r;R)

⟩
can be written as the sum of  a constant

potential of  the uniform phase (with no cavity present), i.e. the Bethe potential [92], and an
electrostatic potential induced by inhomogeneities, which can be thought of  as the change in the
electrostatic potential induced by the nanoscale broken charge symmetries that arise at the
solute-solvent interface, even in the absence of  solute charge. Therefore, we can write the
electrostatic potential from the solvent as⟨

ϕ(r;R)
⟩
= ϕBethe +

⟨
∆ϕ(r;R)

⟩
. (4.9)

The nonuniform potential
⟨
∆ϕ(r;R)

⟩
is the change in the solvent electrostatic potential induced by

the presence of  the solute relative to the bulk solvent, and is nonzero even when the solute charge is
zero and only an uncharged cavity is present in solution.

We now proceed to derive an expression for the free energy ∆µQ by a straightforward coupling
parameter integration, but alternate forms of ∆µQ obtained from potential distribution theory are
presented in Appendix C. In order to obtain the desired change in free energy from a system with a
cavity and no charge to one with a cavity and a charge with its associated neutralizing background,
the interaction energy is linearly coupled to a parameter λ, such that

Ψλ(R) = λQϕ(0;R)− λ
Q

V

∫
drϕ(r;R) (4.10)

is the interaction energy at state λ. Note that this fashion of  coupling λ to the interaction energy
Ψλ(R) turns on the point charge and the neutralizing uniform background charge density in a
manner that maintains neutrality for all values of  the coupling parameter λ. The free energy of  state λ
is given by

βµQ(λ) ∝ − ln
∫
dRe−βH0(R)e−βΨλ(R), (4.11)

where H0(R) is the portion of  the Hamiltonian describing solvent-solvent interactions.
Differentiating this free energy with respect to λ yields the average

∂βµQ

∂λ
=

⟨
∂βΨλ(R)

∂λ

⟩
λ

, (4.12)

where ⟨· · · ⟩λ indicates an ensemble average over the system described by a coupling parameter of λ,
in which there is a cavity already present in the system. We can now integrate over λ to obtain the
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free energy of  charging,

∆µQ = Q

∫ 1

0

dλ
⟨
ϕ(0;R)

⟩
λ
− Q

V

∫ 1

0

dλ

⟨∫
drϕ(r;R)

⟩
λ

. (4.13)

Using Equation 4.9, the first term in Equation 4.13 can be expressed as

Q

∫ 1

0

dλ
⟨
ϕ(0;R)

⟩
λ
= QϕBethe +Q

∫ 1

0

dλ
⟨
∆ϕ(0;R)

⟩
λ
. (4.14)

The second term in Equation 4.13, arising from the background charge density, can be rewritten
using Equation 4.9 as

−Q
V

∫ 1

0

dλ

⟨∫
drϕ(r;R)

⟩
λ

= −QϕBethe −
Q

V

∫ 1

0

dλ

⟨∫
dr∆ϕ(r;R)

⟩
λ

. (4.15)

Harris has shown the electrostatic potential ϕEW(r) obtained from conventional Ewald summation is
that of  a system with no net charge, zero dipole, and zero primitive quadrupole (or equivalently, zero
traceless quadrupole and zero second moment tensor) [93]. Therefore, even if  the system has a
non-zero second moment tensor, specifically its trace T , this will be absent from the potential as
evaluated by the Ewald method. Therefore, the Ewald potential is equivalent to the electrostatic
potential of  the system with the Bethe potential removed, i.e. ∆ϕ(r;R) = ϕEW(r;R). One
well-known feature of  the Ewald potential is that its average must be zero over the simulation cell,

1

V

∫
drϕEW(r;R) =

1

V

∫
dr∆ϕ(r;R) = 0, (4.16)

such that the second term in Equation 4.15 vanishes. Therefore, the contribution to the free energy
from turning on the background charge is

−Q
V

∫ 1

0

dλ

⟨∫
drϕ(r;R)

⟩
λ

= −QϕBethe, (4.17)

as would be expected.
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Finally, combining Equations 4.13, 4.14, and 4.17, the total free energy of  charging is 5

∆µQ = Q

∫ 1

0

dλ
⟨
∆ϕ(0;R)

⟩
λ
. (4.18)

The contributions from the constant bulk potential ϕBethe have canceled, and will do so for any neutral
combination of  charges. The expression for the free energy given in Equation 4.18 is a direct result
of  structural perturbations of  the solvent induced by the solute, and does not contain any contributions
from the bulk. Therefore, ion solvation probes changes in the electrostatic potential induced by the
presence of  the solute and there is no contribution from the absolute potential of  the bulk phase.

We may now ask why approaches like the two interface model have had success in describing ion
solvation for a vast array of  forms of  the solvent interaction potential. The surface potential [96, 97]
that arises at a planar liquid-vapor (LV) interface can be written using Equation 4.6 in the following
form,

ΦLV = 4π

∫ zL

zV

Pz(z)dz +
[
ϕL

Bethe − ϕV
Bethe

]
, (4.19)

where the first term in the expression for ΦLV is an integration of  the z-component of  the molecular
dipole moment density Pz(z) from a point in the bulk vapor phase zV to a point in the bulk liquid
phase zL. The second term is a difference of  the Bethe potentials in the bulk liquid (L) and vapor (V)
phases, and the latter is typically taken to be zero in the case of  water at ambient conditions due to a
negligible solvent density in the vapor phase. The first term in Equation 4.19 is the portion of  the
electrostatic potential difference that arises from the structural changes induced by a planar
liquid-vapor interface, while the term involving the Bethe potentials is a bulk contribution.

In the absence of  solute charge, including the neutralizing background, the two interface model
defines the electrostatic potential at the center of  a cavity in the presence of  a LV interface as⟨
ϕ(0;R)

⟩
0,LV

=
⟨
ϕ(0;R)

⟩
0
− ΦLV. By making the reasonable assumption that because of  the low

vapor density ϕV
Bethe ≈ 0, and using Equations 4.9 and 4.19, the cavity potential in the presence of  a

LV interface is ⟨
ϕ(0;R)

⟩
0,LV

=
⟨
∆ϕ(0;R)

⟩
0
− 4π

∫ zL

zV

Pz(z)dz, (4.20)

which does not depend on the Bethe potential! Therefore, by neglecting free energy changes from the
neutralizing background, but including ΦLV, the two interface model removes the contribution from
ϕBethe, albeit at the cost of  including the additional dipolar potential from solvent reorganization at the
LV interface. Note that this dipolar potential is absent in purely quadrupolar fluids like methane [88],

5Note that when the system is not neutral, for example, if  the neutralizing background is not included, the con-
tribution from the Bethe potential does not vanish. In this case, the free energy of  charging the cavity is given by
∆µQ = Q

∫ 1

0
dλ
⟨
ϕ(0;R)

⟩
λ

.
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and the two interface model yields the desired value of  the potential needed for Equation 4.18 exactly
in this case, although one is still constrained to state points along the LV coexistence curve.

Also note, however, that the two interface model is still not physically correct. In essence, using the
potential given by Equation 4.20 in expressions for the charging free energy would seem to indicate
that an interface infinitely far away from an ion will have a significant influence on the solvation
thermodynamics of  the solute. This cannot be the case, because interfacial electric fields vanish
rapidly away from the location of  the LV interface, and the potential in Equation 4.18 should be used
regardless of  the geometry of  the simulation cell. In addition, it is only for the special case of
negligible vapor density that it is appropriate to make the approximation that the potential of  this
phase is zero, and the solvent will not generally have a vanishing bulk potential in the vapor.

4.4.2 Calculation of  Bulk and Nonuniform Electrostatic Potentials

The determination of  the electrostatic potential has been a source of  confusion in itself, especially
when concerning that of  the uniform bulk liquid phase. Therefore, we devote this subsection to
discussing the calculation of  such potentials. The original development of  the Bethe potential was
concerned with finding the mean inner potential at the center of  an infinite crystal lattice. More
recent work on this same issue has led to the insight that the potential of  a bulk phase is arbitrary until
boundary conditions are defined [92]. If  no boundaries are defined, so that the bulk phase extends to
infinity, the potential of  the bulk phase is zero. This is the approach taken by the Ewald summation
and what is typically done in simulations determining the cavity potential [78, 87], wherein one simply
integrates Poisson’s equation from r = 0 to r = L/2, where L is the length of  the cubic simulation
cell.

However, as discussed above, this approach of  considering an infinite bulk is not correct, and in
general the bulk phase will have a non-zero potential relative to the vacuum, which should be taken as
zero. Indeed, the bulk electrostatic potential can be obtained from Equation 4.3. Boundaries are
introduced in this expression by bounding the integration volume by that of  the cubic simulation cell.
Although Equation 4.3 does provide accurate numerical results for the potential of  the bulk phase
relative to the vacuum in the absence of  any macroscopic interfaces (like a liquid-vapor interface), a
method for determining the bulk potential that makes the effect of  boundaries clear is still desired.

The bulk potential of  uniform fluid can be obtained from a simulation using PBCs introducing the
concept of  a hypothetical droplet, similar to what is often imagined in classical electrostatic
discussions of  dielectric media. This process is illustrated in Figure 4.6. At each configuration R in a
simulation, a cutoff  radius rc is defined. Then, a droplet of  radius rc is “carved out” of  the bulk,
forming an imaginary interface to which the liquid is not allowed to respond. It is important to note
that this droplet must contain neutral molecular charge distributions, since the presence of  net charge
will render the medium a conductor with zero bulk potential. There is a direct analogy to the concept
of  a Gibbs dividing surface in interfacial physics where a uniform bulk is supposed to extend
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(b)

Figure 4.6: (a) Schematic depiction of carving a hypothetical droplet of neutral molecular charge
densities out of a configuration of bulk water. (b) Electrostatic potentials determined by integrating
Poisson’s equation the hypothetical droplets with and without a cavity present in the bulk phase. The
change in the electrostatic potential induced by the presence of the cavity is referred to as the cavity
potential,

⟨
∆ϕ(0;R)

⟩
0
, and is depicted in the figure. The potential ϕBethe obtained from Equation 4.3

is also shown.

unchanged up to the dividing surface [8].
Once this droplet is defined, Poisson’s equation is integrated to yield the electrostatic potential in

configuration R with respect to the vacuum for a system with spherical symmetry,

ϕ(r;R) = −
∫ r

0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r;R) +
∫ ∞

0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r;R), (4.21)

where the second constant term references the configurational potential to the vacuum phase located
at r ≫ rc. The average electrostatic potential is simply obtained as the ensemble average in each
configuration,

⟨
ϕ(r;R)

⟩
B

. For a uniform bulk,
⟨
ϕ(r ≪ rc;R)

⟩
B
= ϕBethe and⟨

ϕ(r ≫ rc;R)
⟩
B
= 0, which allows for the determination of ϕBethe as the difference in the

electrostatic potential between these two limits. This is demonstrated in Figure 4.6.
We conclude this subsection by emphasizing that this method of  determining

⟨
ϕ(r;R)

⟩
explicitly

references the average electrostatic potential to its value in the vacuum but does not require the
presence of  a macroscopic phase boundary in a simulation. This approach is not restricted to
uniform media, and can readily be extended to determine electrostatic potentials in nonuniform
systems. Indeed, the potential determined in the presence of  a cavity, shown in Figure 4.6b, yields
ϕBethe as the potential in the bulk phase and also allows for the estimation of

⟨
∆ϕ(0;R)

⟩
0
. This

allows for the determination of  the cavity potential and therefore the study of  ion hydration away
from liquid-vapor coexistence. In addition, it is also important to note that the introduction of  a
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Figure 4.7: (a) Probability distributions P0(∆ϕ(0)) of the cavity potential ∆ϕ(0) in the absence of
any solute charge. Distributions are shown for RHS = 4 Å and RHS = 10 Å for both the SPC/E
and TIP5P models. Note that as the solute size is increased, the distributions narrow, in accord with
Equation 4.25. Solid lines are Gaussian distributions with the same mean and variance as the simula-
tion results, drawn as data points. (b) Free energies of charging a hard core of radius RHS predicted
by Equation 4.26 for the SPC/E and TIP5P models. Gray and purple symbols indicate the SPC/E
and PBE-DFT free energy predictions for a non-neutral system as discussed in the text. The solid line
is the charge-symmetric prediction of the Born model.

macroscopic liquid-vapor interface modifies the bulk potential by 4π
∫ zL
zV
Pz(z)dz, but the change in

the potential induced by the presence of  a cavity,
⟨
∆ϕ(0;R)

⟩
0
, is unchanged by the presence of  an

interface far away.

4.4.3 Nanoscale Influences on Dielectric Continuum Theory

The above discussion has lead us to the idea that ion solvation probes changes in the electrostatic
potential that are induced by the presence of  the solute relative to the bulk phase, as exemplified by
Equation 4.18. However, the results presented there make no connections to classical dielectric
continuum theories. In order to accomplish this task, we can use the form of ∆µQ obtained from
PDT in Appendix C,

∆µQ = −kBT ln
⟨
e−βQ∆ϕ(0;R)

⟩
0
. (4.22)
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As further discussed in the next chapter, DCTs like the Born model for ion solvation assume that
linear response theory is accurate, which is equivalent to stating that the probability distribution of
the cavity potential P0(∆ϕ(0)) =

⟨
δD
(
∆ϕ(0)−∆ϕ(0;R)

)⟩
0

is Gaussian, where δD(x) refers to
the Dirac delta function. When this is the case, a second-order cumulant expansion of  Equation 4.22
can be performed, yielding

∆µQ ≈ Q
⟨
∆ϕ(0;R)

⟩
0
− βQ2

2

⟨(
δ∆ϕ(0;R)

)2⟩
0
, (4.23)

where ⟨(
δ∆ϕ(0;R)

)2⟩
0
=
⟨(

∆ϕ(0;R)−
⟨
∆ϕ(0;R)

⟩
0

)2⟩
0
=
⟨(
δϕ(0;R)

)2⟩
0
, (4.24)

because the contribution to ϕ(r;R) from ϕBethe is a constant that does not depend on R.
Previous work [87, 98, 99] has shown that the fluctuations of  the cavity potential can be related to

the macroscopic Born theory via

βQ2

2

⟨(
δ∆ϕ(0;R)

)2⟩
0
=

Q2

2RB

(
1− 1

ϵ

)
. (4.25)

Therefore, the linear response approximation to the charging free energy can be written as the
following modified Born model,

∆µQ ≈ Q
⟨
∆ϕ(0;R)

⟩
0
− Q2

2RB

(
1− 1

ϵ

)
, (4.26)

which differs from Equations 4.1 and 4.2 by the form of  the term linear in the ionic charge, which in
this case is proportional to the electrostatic potential at the center of  the cavity induced by the presence of
the solute.

Probability distributions of  the cavity potential, shown in Figure 4.7a, are well approximated by
Gaussian distributions of  the same mean and variance (shown as solid lines), giving credence to the
cumulant expansion performed to arrive at Equation 4.26. The variances of  the distributions in
SPC/E and TIP5P water are similar for solutes of  the same size, as may be expected from
Equation 4.25 and the fact that they have similar dielectric constants. However, the mean of  the
distributions differ between water models. This differing average cavity potential is a direct result of
the subtle structural differences at the cavity-water interface described above. SPC/E has a higher
preference to point hydrogen sites toward the cavity, resulting in a more negative cavity potential than
TIP5P water. The high symmetry of  the TIP5P model results in a cavity potential closer to zero, and
the cavity potential would vanish in the case of  a water model with perfect tetrahedral symmetry, like
the BNS model of  Ben-Naim and Stillinger [28].

The smaller magnitude of  the TIP5P cavity potential leads to smaller solvation asymmetries with
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respect to the sign of  the ion charge than is expected from SPC/E. Indeed, the predicted free
energies of  charging in SPC/E and TIP5P water, compared with the classical Born model in
Figure 4.7b, supports this idea. The magnitude of  the deviations from the Born model are also in
good agreement with previous results [78], with anions being more favorably solvated than cations of
the equivalent size.

In the framework presented here,
⟨
∆ϕ(0;R)

⟩
0
=
⟨
ϕA(0;R)

⟩
0
. However, previous work has used⟨

ϕA(0;R)
⟩
0

to predict charging free energies of  a non-neutral system in the absence of  a neutralizing
background charge density [78, 87]. Coincidentally, this subtle misinterpretation recovers the
expected charge asymmetry observed in experiment. If  one utilizes the form of  Equation 4.26
appropriate to a system with a net charge,

∆µQ ≈ Q
⟨
ϕ(0;R)

⟩
0
− Q2

2RB

(
1− 1

ϵ

)
, (4.27)

charging free energies predicted for classical water models display the opposite asymmetry. These
predictions for the SPC/E model are shown as gray data points in Figure 4.7b.

In contrast, the predicted charging free energies obtained using cavity potentials from quantum
mechanical DFT simulations shown as the purple data points in Figure 4.7b display the
experimentally observed asymmetry for a non-neutral system. The absolute cavity potentials obtained
from DFT simulations are opposite in sign to the corresponding classical potentials, leading to
charging free energies of  the expected asymmetry with respect to the sign of  the ion charge. It was
shown above that these DFT calculations resulted in an interfacial structure similar to that of  the
TIP5P cavity-water interface, which would lead one to believe that the resultant cavity potentials
should be similar. However, unlike classical point-charge models, the nuclear and electron densities of
water are explicitly represented in such quantum models. Therefore, electron density can “spill”
somewhat into the cavity, effectively allowing negative charge density to penetrate further into the
solute than any positive charge. This is in stark contrast to what occurs in classical models, where a
positive point charge can penetrate further than negative charges. Due to the closeness of  negative
charge density to the center of  the solute, we can expect the resultant DFT cavity potentials to be
positive, as is observed. However,

⟨
∆ϕ(0;R)

⟩
0

is opposite in sign and much larger than that of
classical models, as discussed above. Thus, the predicted free energies of  charging in a neutral system
significantly differ between classical and quantum representations of  the molecular interactions in
water, despite the promising predictions obtained for systems with a net charge. Ongoing work is
being undertaken to resolve this issue. Therefore, we focus our attention on

⟨
∆ϕ(0;R)

⟩
0

obtained
for classical water models in the remainder of  this chapter, but the results found qualitatively apply to⟨
ϕ(0;R)

⟩
0

as well.
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4.5 Length-scales of  Ion Solvation

Originating with the work of  Ashbaugh [87], it has been appreciated that after a core radius of
roughly 5–6 Å, the cavity potential is relatively insensitive to the ion size. In order to understand this
phenomenon, we further extend our analysis by decomposing the cavity potential into short-ranged
(SR) and long-ranged (LR) components, also termed near- and far-field, respectively. Following the
treatment of  electrostatics in local molecular field (LMF) theory, we can write the electrostatic
potential as

ϕ(r;R) =

∫
dr′
ρq(r′;R)
|r− r′|

=

∫
dr′
ρqc(r′;R)
ϵ |r− r′|

+

∫
dr′
ρqσ(r′;R)
ϵ |r− r′|

≡ ϕSR(r;R) + ϕLR(r;R), (4.28)

where ϕSR(r;R) is the near-field portion of  the electrostatic potential, while ϕLR(r;R) is the
corresponding far-field component, such that

ρqc(r;R) =
∫
dr′ρq(r′;R)

[
δ(|r− r′|)− exp(− |r− r′|2 /σ2)

σ3π3/2

]
(4.29)

is the short ranged “core” component of  the charge density, and

ρqσ(r) =
∫
dr′ρq(r′;R)

exp(− |r− r′|2 /σ2)

σ3π3/2
(4.30)

is the Gaussian-smoothed, LR portion of  the charge density, which naturally arises in LMF theory.
As detailed in Appendices E.1 and E.2, the far-field component of  the potential completely

contains the contributions from the first non-vanishing multipole moment of  the charge density
ρq(r), as well as the next higher order moment. Therefore, the splitting of  the potential in
Equation 4.28 effectively isolates the longest-wavelength modes of  the electrostatic response to the
presence of  the solute within ϕLR(r;R). This far-field component will also contain non-trivial
modifications to the higher moments in terms of  the lower moments, and these modifications in turn
make up the multipole contributions to ϕSR(r;R). In the case of  water, the electrostatic potential
ϕLR(r;R) will have the exact same dipole and quadrupole terms as ϕ(r;R), while ϕSR(r;R) will
contain only multipole contributions of  order greater than the quadrupole. Therefore, ϕSR(r;R) will
also lack any contribution from the Bethe potential, which will be considered part of  the far field
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Figure 4.8: Decomposition of the cavity potential into near- and far-field components,⟨
∆ϕSR(0;R)

⟩
0

and
⟨
∆ϕLR(0;R)

⟩
0
, respectively, for (a) SPC/E and (b) TIP5P water as a function

of solute size. Shaded regions indicate the variance of the corresponding distributions of each compo-
nent of the cavity potential, shown in Figure 4.9. Note the different scales of the vertical axes in (a)
and (b).

response. The cavity potential can then be written as⟨
∆ϕ(0;R)

⟩
0

=
⟨
ϕ(0;R)

⟩
0
− ϕBethe =

⟨
ϕSR(0;R)

⟩
0
+
⟨
ϕLR(0;R)

⟩
0
− ϕBethe

=
⟨
∆ϕSR(0;R)

⟩
0
+
⟨
∆ϕLR(0;R)

⟩
0
, (4.31)

such that the far-field component of  the cavity potential is⟨
∆ϕLR(0;R)

⟩
0
=
⟨
ϕLR(0;R)

⟩
0
− ϕBethe (4.32)

and the near-field component is simply
⟨
∆ϕSR(0;R)

⟩
0
=
⟨
ϕSR(0;R)

⟩
0
.

For a planar interface, the electrostatic potential difference across the phase boundary, given by
Equation 4.19, is a sum of  a long ranged dipolar component and the Bethe potential. In this limit, the
surface potential is exclusively due to far field contributions. Therefore, we can expect that⟨
∆ϕLR(0;R)

⟩
0

will dominate the cavity potential in the large solute limit. This is indeed the case,
evidenced by the data shown in Figure 4.8. In contrast, we find that for small solutes (RHS < 1 nm),
the cavity potential has a significant component that is due to near-field electrostatics, which do not
contain dipole and quadrupole contributions. Therefore, by separating the electrostatics into near-
and far-field components, we can readily see that in the small cavity limit higher order multipoles will
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Figure 4.9: Probability distributions of (a) the total cavity potential, (b) its near-field component,
and (c) its far-field for cavities of radii RHS =1, 4, and 10 Å in SPC/E and TIP5P water. Solid
and dashed lines are Gaussian distributions with the same mean and variance as the correspond-
ing simulation data points for the SPC/E and TIP5P models, respectively. The inset in (a) displays
lnP0(δϕ(0)) and the corresponding Gaussian distributions with the same mean and variance for
RHS = 1 Å for SPC/E and TIP5P water. Note that for small cavity sizes the distributions do not
follow Gaussian statistics.

make a nontrivial contribution to the cavity potential, in agreement with explicit multipole expansions
of  the potential [100, 101].

In the small solute regime, when the near-field electrostatics contribute substantially to⟨
∆ϕ(0;R)

⟩
0
, the cavity potential is very sensitive to local structure, and therefore the manner in

which the H-bond network is maintained around the solute. Due to the donor/acceptor angular
asymmetries detailed above,

⟨
∆ϕSR(0;R)

⟩
0

displays a significant dependence on the specific form of
the water-water interaction potential; cavity potentials generated by SPC/E water are roughly 4–5
times larger in magnitude than those for the TIP5P model for all RHS. However, the qualitative
features of  the solute size-dependence of  all portions of  the cavity potential are independent of  the
choice of  water model. The near-field component of  the cavity potential is significant for RHS < RC ,
a crossover occurs at a solute radius near RC , after which

⟨
∆ϕLR(0;R)

⟩
0

dominates the behavior of
the cavity potential.

The variances of  the corresponding distributions of  the components of  the cavity potential are
depicted as shaded regions in Figure 4.8. The variance of  the near-field portion has a significant
dependence on solute size, decreasing with increasing cavity radii, and it will reach a δ-function
distribution for RHS ≫ σ, as evidenced by the probability distributions of  the near-field component
of  the cavity potential shown in Figure 4.9b. In contrast, the variance of  the far-field portion of  the
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cavity potential changes very little as the solute is changed from a point solute to RHS = 10 Å, and
the distributions of ∆ϕLR(0) are remarkably Gaussian for all solute sizes, Figure 4.9c. Therefore,
deviations from a Gaussian in distributions of  the total cavity potential, shown in Figure 4.9a, arise
solely from the non-Gaussian nature of  the near-field component. This may not be surprising, since
near-field interactions involve local reorientations of  charge on the scale of  a water molecule, and
significant non-linearities due to structural rearrangements can be expected when charging a neutral
core. On the other hand, long ranged electrostatic interactions are slowly-varying over such small
distances, and the corresponding far-field response is a collective behavior involving length-scales on
the order of  several molecules, exemplified by the formation of  dipole layers at the interface of  a large
cavity, for example. As such, we can expect far-field components of  electrostatic quantities to follow
Gaussian behavior with a variance described by linear-response relations akin to Equation 4.25,
which treat the solvent as a dielectric continuum. These ideas are discussed in further detail in the
next chapter.

4.6 Conclusions

In this chapter, we have demonstrated that subtle differences in the representation of  molecular
interaction are manifested in the structure and thermodynamics of  ion hydration. In particular, the
proposed negativity track of  Agmon [83], arising from a delocalization of  electron density about the
oxygen atom of  a water molecule, was not substantiated by quantum mechanical DFT calculations of
hard sphere solutes in water. Instead, the manner in which the hydrogen bond network is maintained
around solutes near the length scale transition was found to be consistent with the explicit
representation of  lone pair electrons in the classical TIP5P water model, and contrasts the structure
of  SPC/E water around the solute, which displays significant donor/acceptor asymmetries.

These subtle asymmetries in nanoscale interfacial structure have significant consequences on the
thermodynamics of  solvation; in this case, ion hydration is influenced by structure through the cavity
potential. In our quest to illustrate this point, we have also shed light on the paradoxical hydration
asymmetry with respect to the sign of  the ion charge. In particular, the symmetric portion of  the
charging free energy, originally described by Born, should be modified by an additional term
consisting of  the product of  the ion charge and the portion of  the electrostatic potential at the center
of  the cavity that is induced by the solute, and not the total electrostatic potential as initially
postulated. This component of  the cavity potential is obtained by removing the constant potential of
the bulk dielectric, termed the Bethe potential, and several methods of  calculating this potential were
explored. The approach developed herein also allows for the study of  ion solvation away from
liquid-vapor coexistence, something that is not possible when employing the two-interface model
discussed throughout the text.

In addition, by separating this cavity potential into near- and far-field components, it was shown
that near-field electrostatics, and therefore higher order multipole interactions, are important when
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solvating small ions. However, a crossover occurs in the range 5 Å < RHS < 10 Å, in which the
contribution from the near-field electrostatics diminishes, and after which the cavity potential is
exclusively due to far-field electrostatics. It has been suggested that after this length scale ion specific
effects vanish [102], and consequently, our results imply that such ion specificity arises from
near-field electrostatics. In addition, long ranged components of  dielectric response are found to be
Gaussian in nature for all solute sizes, and continuum descriptions of  far-field electrostatics are
expected to be accurate. We will describe some aspects of  such DCTs in the next chapter.

We conclude by noting that our findings are not restricted to aqueous solutions. Two particularly
interesting and important limits are illustrated by considering ion solvation in methane and a
size-asymmetric primitive model (SAPM) electrolyte. As mentioned above, methane, at least in the
tetrahedral site-site classical model typically used, is a purely quadrupolar molecule; it has no dipole or
net charge. For such a fluid,

⟨
ϕ(0;R)

⟩Me

0
= 0, such that

⟨
∆ϕ(0;R)

⟩Me

0
= ϕMe

Bethe. In this case, there is
no structural component to the cavity potential, and the symmetry with respect to the sign of  the ion
charge depends only on the sign of ϕMe

Bethe. In addition, for solvation of  a single ion in the absence of  a
neutralizing background, the charging process is completely symmetric with respect to the sign of  the
ion charge, because

⟨
ϕ(0;R)

⟩Me

0
= 0.

The SAPM electrolyte represents the opposite limit, wherein the cavity potential is completely
determined by the response of  the solvent to the solute. The bulk potential vanishes in any
conductor, therefore ϕSAPM

Bethe = 0. It immediately follows that the cavity potential⟨
∆ϕ(0;R)

⟩SAPM

0
=
⟨
ϕ(0;R)

⟩SAPM

0
is solely due to the structure induced by the solute, which in this

case is simply a consequence of  the size asymmetry between the positive and negative ions of  the
SAPM. Indeed, in the limit that the solvent ions are the same size, leading to the symmetric primitive
model (SPM), the cavity potential vanishes.
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If  we develop only a macroscopic description of
matter in an electric field, we shall find it hard to
answer some rather obvious sounding questions.

Edward M. Purcell

5
On Molecular Interactions and the Response to

Nanoscale Broken Symmetries II: Dielectric
Response

5.1 Ion Solvation from the LMF Perspective

The theoretical and computational treatment of  ion solvation typically begins by dividing
the solvation process into electrostatic and non-electrostatic steps, such that one begins with a

uniform bulk solvent and ends with a single ion of  charge Q in solution. The traditional approach,
illustrated in Figure 5.1 and considered even by Born [103], separates an ion into a hard core, which
excludes solvent charge from a spherical volume of  radius R, and a point charge at the center of  this
cavity. Instead of  inserting an ion directly into the solvent, first a cavity is created by inserting the
hard spherical core of  the ion into the fluid. This first step is typically considered non-electrostatic in
nature, because the free energy of  core insertion does not depend on the ion charge. However, as
discussed in detail in the preceding chapter, significant asymmetries in the structural response of  the
solvent to such cavities can develop. This asymmetric structure of  the solvation shell can induce a
non-zero electrostatic response to cavity formation, exemplified by the cavity potential. Therefore,
significant electrostatic asymmetries already exist when a spherical cavity is formed in a dielectric.

The asymmetric solvation structure around a cavity additionally complicates the classical concept
of  a test charge in molecular simulation. Dielectric response cannot be probed directly with a point
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test charge because it can overlap with charged molecular sites, giving rise to singularities. Therefore,
point charges must be placed inside cavities already existing in a fluid. But standard dielectric
continuum arguments no longer hold due to the asymmetries and nonlinearities associated with the
solvent response to a cavity. To overcome such issues, we will utilize LMF theory to introduce the
concept of  a Gaussian test charge. We will show that Gaussian charge distributions are the appropriate
entity to use as a test charge in order to probe dielectric response in molecular simulations.

The non-zero electrostatic response of  the solvent to the ion core will make the next step of  the
solvation process, placing a point charge of  magnitude Q at the center of  the spherical cavity,
asymmetric with respect to the sign of Q. Further asymmetries develop when one considers the
additional polarization of  the solvent, in this case water, in response to the presence of  the ion charge.
This polarization asymmetry will depend on the nature of  the water-water intermolecular potential,
and, to a lesser extent, the ion-water interaction potential. If  the ionic charge is negative, classical
water models like SPC/E and TIP5P will tend to orient a positively charged hydrogen site toward the
ion. Indeed, when the joint probability distributions P (θµ, ϕ) discussed in the previous chapter are
calculated for water molecules in the hydration shell of  an anion, we find similar structures for both
models, Figures 5.2a and 5.2b. However, if  one considers turning on a positive charge at the center of
the ion core, the different representations of  the lone pair electrons will lead to significantly different
solvation structures. Indeed, the distributions in Figure 5.2c indicate that SPC/E tends to point its
dipole moment away from a cation, and can readily adopt configurations along its “classical negativity
track.” In contrast, the cationic hydration shell structure of  TIP5P water is nearly symmetric with
respect to the anionic shell upon interchange of  lone pair and hydrogen sites, Figure 5.2d. The high
symmetry of  the TIP5P solvation shell may be expected from our results in the previous chapter.

An alternative view of  ion solvation can be obtained through the perspective of  LMF theory, as
depicted in Figure 5.3. We can divide the final step of  the traditional process, charging the ionic core,
into near- and far-field components. The near-field portion of  the point charge, with potential
Qv0(r), is short ranged, rapidly varying over molecular length scales, and will contain the divergence
of  the Coulomb potential as r goes to zero. Therefore, the insertion of  this truncated point charge
into the fluid cannot be performed without a cavity present, and this step must follow insertion of
the ion core. Consequently, asymmetric solvation behavior associated with the presence of  a cavity in
the fluid, as well as the polarization asymmetry discussed above, will be associated with this near-field
charging process.

The far-field component of  the point charge corresponds to a Gaussian charge distribution of
magnitude Q and width l, where l is the LMF length scale used to separate the point charge.
Insertion of  this Gaussian charge distribution into the solvent can be accomplished with or without
an excluded volume present in the liquid, because the potential due to this charge distribution is finite
at r = 0. Therefore, we can rearrange the steps in the ion solvation process as depicted in Figure 5.3:
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Figure 5.1: Illustration of the classical view on ion solvation in aqueous solution. The first step con-
sists of inserting a hard core into the solvent, depicted as a grey sphere, and the free energy of this
process is considered non-electrostatic in nature. This first step already exhibits non-linear response
and asymmetries in the solvation shell of the cavity. This asymmetric structure leads to further asym-
metries in the rest of the solvation process. The electrostatic portion of the ion solvation free energy
is due to charging of the hard sphere to yield the fully charged ion, indicated by the green sphere with
a “+” at the center, and this makes up the second step of the ion solvation process. Note that this
latter step can be further split into two processes from an LMF perspective: turning on the short
ranged ion charge Qv0(r), and turning on the far field contribution, vQ(r) = Qv1(r).

(i) introduce a Gaussian charge distribution into the bulk fluid, (ii) insert a spherical cavity into the
solvent at the center of  the Gaussian charge, and (iii) turn on the near-field portion of  the charge.
The free energy change associated with this process is identical to that of  Figure 5.1, yet the
alternative rearrangement better illustrates where asymmetries and non-linearities arise.

Modification of  strong, local interactions, like the insertion of  a hard core in the presence or
absence of  a Gaussian test charge, or turning on near-field charges, will typically induce a non-linear
and asymmetric solvent response 1, as discussed above and in detail in the previous chapter. In
contrast, we expect the insertion of  an appropriately chosen Gaussian charge distribution into the
solvent to be a small perturbation, such that the first step in the LMF-based ion solvation process in
Figure 5.3 follows linear response theory and therefore will be symmetric with respect to the sign of
Q. Therefore, the LMF approach to ion solvation isolates linear and symmetric responses in the first
step, while moving all asymmetries and non-linear responses to steps (ii) and (iii). These latter steps
involve strong short ranged interactions more dependent on details of  the particular molecular
models used and are not amenable to general theoretical treatment. This chapter focuses on step (i),

1If  the cavity radius is much larger than the truncation length of  the charge, R ≫ l, the surrounding fluid will not
interact with the near-field component of  the charge. In this special case, the solvent will not exhibit a response to this
portion of  the charging process. However, there will still exist a large non-linear response to the insertion of  such a large
cavity and an associated asymmetric hydration structure and cavity potential.
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Figure 5.2: Joint probability distributions P (θµ, ϕ) calculated for molecules in the first hydration
shell of an anionic (a,b) or cationic (c,d) LJ particle of unit charge in SPC/E (a,c) or TIP5P (b,d)
water. Red indicates high probability, while blue corresponds to low probability. The water-ion LJ
interaction parameters are σLJ = 3.44778 Å and εLJ = 0.893228 kJ/mol, and correspond to a united
atom representation of methane [80]. For consistency, the same ion-water LJ parameters were used
for both SPC/E and TIP5P water systems.
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Figure 5.3: Illustration of the LMF-based reordering of the ion solvation process as discussed in the
text. The first step in this process corresponds to inserting a Gaussian charge distribution of width l
and magnitude Q into the uniform bulk fluid, and this distribution is schematically indicated by the
green region in the second panel from the left. This first step is expected to be symmetric with re-
spect to the sign of Q and in the linear response regime, as detailed in the text. The next step in the
process consists of inserting the uncharged ion core at the location of the Gaussian test charge, yield-
ing a solute with far-field electrostatics and strong, short ranged, non-electrostatic core interactions.
This step in the solvation process will introduce asymmetries with respect to Q due to the asymmet-
ric nature of the water molecule and the H-bond network around the solute. The response of the
solvent to the introduction of such a cavity is also expected to be non-linear, due to harsh repulsive
core interactions. The third and final step of the process is to turn on the near-field portion of the ion
charge, Qv0(r), effectively turning the Gaussian charge into a point charge. This step will be asym-
metric with respect to the sign of Q if the water model used is not perfectly tetrahedral. Whether or
not the solvent response to this charging process is in linear regime will depend on both the magni-
tude and sign of Q, as well as the exact form of the water-water and water-ion interaction potentials,
and general statements regarding this type of charging cannot be made.

inserting a Gaussian charge distribution into a fluid of  interest. We develop accurate analytic
approximations to the structural and thermodynamic response of  dielectric and conducting fluids to
such Gaussian charges, and find that such distributions are an interesting probe of  dielectric response
in their own right. Indeed we argue they play the role of  the classical test charge but can be
consistently used in molecular simulations.

5.2 Regularizing point charge singularities: Probing the dielectric response of  bulk
fluids with Gaussian charges

Inserting a test charge into a fluid continuum to probe its dielectric response is commonplace in
classical electrostatics [104, 105, 106]. Nevertheless, complications arise when this is performed in a
molecular detailed system. For example, a point charge can be readily inserted into the space between
molecules, which is free of  nuclear charge or effective point charges in classical models. However, if
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the probe is placed close to a charged atomic site, singularities arise and the associated energetics and
response cannot be calculated. This classical Coulomb collapse singularity is often avoided through the
introduction of  a hard spherical volume surrounding the probe charge where even intramolecular
point charge sites are not allowed to penetrate [106], and appears in the commonly used scheme
depicted in Figure 5.1 to calculate ion solvation free energies [80, 81].

An alternative route to this type of  regularization is to smear the probe with a Gaussian
distribution, resulting in a Gaussian test charge, which, with smearing over large enough scales (a few
Angstroms for water), can be inserted even near intramolecular point charged sites without large
singular energies arising. This type of  charge distribution arises when using LMF theory ideas to
reorganize the steps involved in calculating ion solvation free energies, as illustrated in Figure 5.3. We
derive accurate analytic approximations to the structural and thermodynamic response of  dielectric
fluids to a Gaussian test charge herein.

We first consider the free energy change upon insertion of  a Gaussian charge distribution of  width
l centered at the origin, such that the electrostatic potential is

vQ(r) =
Q erf(r/l)

r
= Qv1(r). (5.1)

One formally exact way to determine the free energy of  inserting this distribution, ∆Gl, is to use
PDT,

e−β∆Gl =
⟨
e−βΨ(R)

⟩
0
=
⟨
eβΨ(R)

⟩−1

Q
, (5.2)

where ⟨· · · ⟩Q and ⟨· · · ⟩0 indicate ensemble averages over configurations of  the system where the
Gaussian charge distribution is present or absent, respectively,

Ψ(R) =
N∑
i=1

qivQ(ri) =

∫
drρq(r;R)vQ(r) (5.3)

is the total energy of  interaction with the Gaussian charge distribution for a single point in phase
space R, and

ρq(r;R) =
NC∑
i=1

qiδ(r− ri(R)) (5.4)

is the singlet charge density of  the system of NC charges, where ri(R) and qi, respectively, are the
position and charge of  site i in configuration R, such that the average charge density in the presence
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of vQ(r) is given by

ρqQ(r) =
⟨
ρq(r;R)

⟩
Q
=

⟨
NC∑
i=1

qiδ(r− ri(R))

⟩
Q

. (5.5)

A formally equivalent but alternative route to the free energy ∆Gl that avoids averaging over
exponentials is to proceed by coupling parameter integration, and this is detailed in Appendix F.

The Gaussian charge distribution can be considered a small perturbation with appropriately
chosen Q and l, and so we expect the system to respond in a manner consistent with linear response
theory. In this regime, the free energy of  turning on vQ(r) is given by the Gaussian or linear response
approximation to Equation 5.2,

∆Gl ≈
1

2

[⟨
Ψ(R)

⟩
0
+
⟨
Ψ(R)

⟩
Q

]
. (5.6)

Note that in the bulk, uniform fluid, the average charge density is ρq0(r) = 0, and therefore⟨
Ψ(R)

⟩
0
= 0. The free energy of  turning on the Gaussian distribution of  charge can now be written

as
∆Gl =

1

2

⟨
Ψ(R)

⟩
Q
=

1

2

∫
drρqQ(r)vQ(r) =

1

2

1

(2π)3

∫
dkρ̂qQ(k)v̂Q(k), (5.7)

where we have used Parseval’s theorem to rewrite the free energy in terms of  an integral in Fourier
space, and v̂Q(k) =

4πQ
k2
e−k2l2/4. Further consequences of  Equation 5.7 are discussed in

Appendix G. We proceed by finding an analytic expression for the structural response ρqQ(r) to the
Gaussian test charge in the next subsection.

5.2.1 Nonuniform Charge Densities from Linear Response Theory

A functional expansion of ρqQ(r) about the uniform system to linear order in vQ(r) allows us to
rewrite the charge density of  the nonuniform system in terms of  the charge-charge linear response
function of  the uniform system;

ρqQ(r) ≈ ρq0(r) +
∫
dr′

δρq0(r)
δ [−βvQ(r′)]

[−βvQ(r′)] = −β
∫
dr′χqq

0 (|r− r′|)vQ(r′), (5.8)

where χqq
0 (r, r′) =

⟨
δρq0(r;R)δρ

q
0(r

′;R)
⟩
0

is the charge-charge linear response function and
δρq0(r;R) ≡ ρq(r;R)− ρq0(r) = ρq(r;R). The resulting expression for the density in k-space is then
given by

ρ̂qQ(k) ≈ −βχ̂qq
0 (k)v̂Q(k). (5.9)
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The Gaussian in v̂Q(k) cuts off  large k components in ρ̂qQ(k). For large enough l, we can thus
expand the charge-charge linear response function to second order as

χ̂qq
0 (k) ∼ χ̂

(0)qq
0 + k2χ̂

(2)qq
0 = k2χ̂

(2)qq
0 , (5.10)

where χ̂(0)qq
0 = 0 due to neutrality, and χ̂(2)qq

0 = −1
6

∫
drr2χqq

0 (r). The expression for the charge
density then becomes

ρ̂qQ(k) ≈ −4πβQχ̂
(2)qq
0 e−k2l2/4 (5.11)

The second moment of  the charge-charge linear response function is exactly related to the
dielectric constant by a generalization of  the Stillinger-Lovett moment
conditions [27, 106, 107, 108, 109],

4πβχ̂
(2)qq
0 = 1− 1

ϵ
. (5.12)

Therefore, the expression for the charge density in Equation 5.11 becomes

ρ̂qQ(k) = −Q
(
1− 1

ϵ

)
e−k2l2/4, (5.13)

or, equivalently in real space,

ρqQ(r) = −Q
(
1− 1

ϵ

)
1

l3π3/2
e−r2/l2 . (5.14)

Thus, in this approximation the charge density induced by a Gaussian test charge with potential vG(r)
is a Gaussian with the same width as the test distribution and with magnitude −Q

(
1− 1

ϵ

)
. This

illustrates the classical concept of  incomplete charge screening in a dielectric, where the magnitude of
a charge immersed in a dielectric that is felt by a test charge very far away is reduced by a factor of
1/ϵ. In the case of  a conducting medium, ϵ = ∞, and complete screening is recovered, ρ̂qQ(0) = −Q.

In addition to the bare charge density, we can also readily obtain an approximate expression for the
Gaussian smoothed charge density ρqσQ (r) =

∫
dr′ρq(r′)ρG(|r− r′| ;σ), where

ρG(r;σ) ≡ exp(−r2/σ2)/σ3π3/2. Using Equation 5.14 for the charge density, ρqσQ (r) is given by

ρqσQ (r) = −Q
(
1− 1

ϵ

)
1

γ3π3/2
e−r2/γ2

, (5.15)

where γ ≡
√
l2 + σ2. We can anticipate that approximation 5.15 for the smoothed charge density

will be accurate even for circumstances where Equation 5.14 fails, because the smoothed charge
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density is a description of  the long-wavelength response of  a charged system [1].
At this point, I should mention that the charge density in the presence of vQ(r) can also be

obtained from configurations of  the bulk fluid using the configuration-based linear response
formulation of  Hu and Weeks [110],

ρqQ(r) =

⟨
ρq0(r;R)e

−βΨ(R)
⟩
0⟨

e−βΨ(R)
⟩
0

≈ −β
⟨
δρq0(r;R)δΨ0(R)

⟩
0
, (5.16)

where the approximation is valid in the linear regime and δΨ0(R) ≡ Ψ(R)−
⟨
Ψ(R)

⟩
0
= Ψ(R). Hu

and Weeks discuss the more general case, where the 0 system is nonuniform, and in general

⟨
δρq0(r;R)δΨ0(R)

⟩
0
=

∫
dr′χqq

0 (r, r′)vQ(r′) (5.17)

for any particular choice of  the reference system. For the specific case where the reference state is a
uniform fluid, as considered here, we can readily evaluate both the left and right sides of
Equation 5.17, as both will depend only on the scalar distance r. However, if  we consider turning on
a test charge distribution in a nonuniform environment, the charge-charge linear response function
χqq
0 (r, r′) is six-dimensional, while the fluctuation term on the LHS of  Equation 5.17 is at most

three-dimensional, and can easily be evaluated in both uniform and nonuniform systems.

5.2.2 The Continuum Free Energy

When the above approximations for the induced charge density are valid, we can readily obtain an
analytic expression for the free energy ∆Gl by inserting Equation 5.14 into Equation 5.7, yielding

∆Gl = − Q2

l
√
2π

(
1− 1

ϵ

)
. (5.18)

This approximation for ∆Gl can be used to analytically evaluate the first step in the LMF-based ion
solvation process of  Figure 5.1. It is also interesting to note that Equation 5.18 has the same form as
the classical Born charging free energy, with 2RB → l

√
2π.

Regularizing the electrostatic interactions by consideration of  a Gaussian charge distribution and
not a point charge is essential, as it eliminates any divergences at large k. Indeed, if  one tries to carry
out the above with a point charge, the integration over k in Equation 5.7, and therefore the free
energy, will diverge (analogously, the point charge limit of  Equation 5.18, liml→0∆Gl, also diverges).
This divergence occurs as k approaches infinity, or equivalently as r approaches zero. This classical
Coulomb collapse singularity occurs at small scales, contrasting the other common divergence of  the
Coulomb potential when r → ∞, for example, when analytically evaluating the electrostatic energy

100



of  a system in classical statistical mechanics, limR→∞
∫ R

rc
dr1

r
= ∞, where the cutoff rc > 0

regularizes the potential at short distances. While Gaussian charges still have the latter, long-ranged
divergences, the short-ranged, r → 0 singularity is tamed, allowing us to consider processes like
inserting a test distribution in a molecular system.

The free energy in Equation 5.18 can be readily generalized in terms of  a k-dependent dielectric
constant, arising from the higher order terms neglected in the small-k expansion of  the charge-charge
linear response function in Equation 5.10. In this case,

4πβ

k2
χ̂qq
0 (k) = 1− 1

ϵ(k)
, (5.19)

and the linear response expression for the free energy becomes

∆Gl = − Q2

l
√
2π

[
1− l

√
2π

π

∫ ∞

0

dk
e−k2l2/2

ϵ(k)

]
, (5.20)

which can be readily evaluated if ϵ(k) is known, or at least a good representation of  the small
k-behavior of ϵ(k) should provide a reasonable approximation to ∆Gl. Simulations results for
χqq
0 (r) will provide such data, and can be used to verify the approximations used above. We also

expect that linear response theory will be quite accurate for a Gaussian charge distribution with
l ≥ 4 Å in all classical water models, but there may, and most likely will be small differences in ϵ(k)
depending on the particular interaction potential for water.

5.2.3 Gaussian Fluctuations of  the Interaction Energy

The accuracy of  the linear response approximations in the derivation of ∆Gl imply that the
distribution of  the interaction energy Ψ(R) is Gaussian. The distribution is then completely defined
by its first two cumulants, and we determine analytic expressions for these quantities in this
subsection.

In the uniform system, the first cumulant is trivially zero,
⟨
Ψ(R)

⟩
0
= 0. From Equations 5.7

and 5.18, the mean evaluated over configurations in the system with the charge present is

⟨
Ψ(R)

⟩
Q
= 2∆Gl = − 2Q2

l
√
2π

(
1− 1

ϵ

)
. (5.21)

In Appendix G, we demonstrate that the variances in the systems with and without the Gaussian
charge present are equal,

⟨
(δΨ(R))2

⟩
0
=
⟨
(δΨ(R))2

⟩
Q

. The variance can be evaluated by first
noting that

⟨
(δΨ(R))2

⟩
0
=
⟨
Ψ2(R)

⟩
0
, because the mean interaction energy is zero in the uniform
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fluid. The square of  the energy can be rewritten as

⟨
Ψ2(R)

⟩
0

=

⟨∫
dr
∫
dr′ρq(r;R)ρq(r′;R)vQ(r)vQ(r′)

⟩
0

=

∫
dr
∫
dr′
⟨
ρq(r;R)ρq(r′;R)

⟩
0
vQ(r)vQ(r′)

=

∫
dr
∫
dr′χqq

0 (|r− r′|)vQ(r)vQ(r′)

=
1

(2π)3

∫
dkχ̂qq

0 (k)v̂Q(k)v̂Q(−k), (5.22)

using Parseval’s theorem and the convolution theorem to arrive at the last equality. By expanding the
linear response function χ̂qq

0 (k) to second order and using the Stillinger-Lovett second moment
condition, as done above for the free energy, we obtain

⟨
(δΨ(R))2

⟩
0
=
⟨
(δΨ(R))2

⟩
Q
=

2kBTQ
2

l
√
2π

(
1− 1

ϵ

)
= −2kBT∆Gl. (5.23)

The probability distribution of  the interaction energy can then be described by the Gaussian
distribution

P0/Q(Ψ) =
[
2π
⟨
(δΨ(R))2

⟩
0/Q

]−1/2

exp

−
(
Ψ−

⟨
Ψ(R)

⟩
0/Q

)2
2
⟨
(δΨ(R))2

⟩
0/Q

 , (5.24)

such that sampling in the presence of  the Gaussian charge simply shifts the mean of  the distribution.

5.3 Long-Wavelength Dielectric Response is Insensitive to Molecular-Scale Details

We can now test the above ideas by probing the response of  dielectric fluids to a Gaussian charge
distribution with simulation. In this section, we focus on the response of  SPC/E and TIP5P water to
this type of  regularized test charge. We can take several approaches to handle the electrostatics in the
simulation of  these systems. The results presented in this section were obtained by using the Ewald
summation method to calculate electrostatic interactions between water molecules, while the
interactions between the Gaussian distribution and water was performed by simple summation using
the minimum image convention. This manner of  treating electrostatics leads to artifacts at the edges
of  the box due to discontinuities in the force from the Gaussian test charge, and we therefore omit
water molecules within five Angstroms of  the box edge in our results. We will see later that when
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Figure 5.4: (a) Bare and (b) Gaussian smoothed charge densities for SPC/E and TIP5P water ob-
tained in the presence of Gaussian test charge of magnitude Q = ±1 and width l = 4.5 Å. Data
points are simulation results while lines in (a) and (b) are the analytic approximations of Equa-
tions 5.14 and 5.15, respectively. Smoothed charge densities were calculated using a smoothing
length of σ = l.

Ewald summation is used to evaluate all electrostatic interactions in the system, including those
between the Gaussian charge and water, significant finite size effects arise due to the periodicity of
the Ewald method and need to be taken into account in our formalism.

In the previous chapter, it was demonstrated that small differences in the interaction potentials of
SPC/E and TIP5P lead to significant differences in the structural response to a spherical cavity and,
therefore, ion solvation thermodynamics. However, the bare and smoothed charge densities in
Figure 5.4 illustrate that such molecular details are not needed for the accurate description of
long-wavelength dielectric response. The analytic approximations for the induced charge densities in
Equations 5.14 and 5.15 describe the simulation data remarkably well, illustrating that far-field
electrostatics follows dielectric continuum theory. Since the only property of  the fluid in the
expressions for ρqQ(r) and ρqσQ (r) is the dielectric constant, we can conclude that this is all that is
needed for a model to accurately describe long-wavelength dielectric response. Indeed, the dielectric
constants of  SPC/E and TIP5P are quite similar, ϵSPC/E = 72 while ϵTIP5P = 81.5, and their
responses to a Gaussian test charge are nearly identical.
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Figure 5.5: Probability distributions of the interaction energy Ψ between (a) SPC/E or (b) TIP5P
water and a Gaussian test charge of magnitude Q = +1 and l = 4.5 Å in the uniform fluid, P0(Ψ),
and in the presence of the test charge, PQ(Ψ). Solid lines are the corresponding analytic approxima-
tions given by Equation 5.24. Dashed lines are the finite size corrected approximations to the distribu-
tions obtained with a variance estimated by Equation 5.25. (c) The variance of the interaction energy
in SPC/E water as a function of inverse box length L. The solid line is a linear fit to the data points
and the starred data point is the continuum approximation to the variance given by Equation 5.23.
(inset) Natural logarithm of the probability distributions corresponding to the data points in the main
figure.

In addition to providing an accurate description of  the static dielectric response, fluctuations in the
energy are well approximated by the framework developed herein, as evidenced by the probability
distributions of  the interaction energy Ψ in Figure 5.5. For both SPC/E and TIP5P water models,
the distribution P0(Ψ) obtained from the uniform bulk is nearly identical to the distribution PQ(Ψ)
calculated in the presence of  the Gaussian test charge when shifted by their respective means. This
demonstrates that fluctuations in the water-test charge interaction energy do in fact follow Gaussian
statistics, such that their variances are equal. This variance is well approximated by Equation 5.23, as
evidenced by the solid lines in Figure 5.5 obtained through the use of  Equation 5.23 in Equation 5.24.
However, Equation 5.23 slightly overestimates the width of P0/Q(Ψ).

A large portion of  this overestimation is simply due to finite size effects. Equation 5.23 assumes an
infinite system size, whereas the simulation results in Figures 5.5a and 5.5b were obtained with cubic
cells containing N = 1000 water molecules. We can account for such finite size effects in our
formalism in an approximate manner by assuming a spherical cutoff  at the edge of  simulation cell. At
this cutoff, L/2 ≫ l, the potential of  the Gaussian test charge is nearly equal to the Coulomb
potential, vQ(r) ≈ 1/r. Therefore, we can estimate the finite size effects with a simple Born model.
The contribution to the free energy outside the cutoff  radius is ∆G(L/2) = −Q2(1− 1/ϵ)/L. The
variance of  the fluctuations in interaction energy in a finite system of  radius L/2 can then be written
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as ⟨
(δΨ(R))2

⟩
FS

≈
⟨
(δΨ(R))2

⟩
− 2kBTQ

2

L

(
1− 1

ϵ

)
, (5.25)

where the subscript “FS” indicates that the average is obtained in a system of  finite size, the first term
on the right hand side is the variance given by Equation 5.23, and the second term removes the
portion of  the variance from interactions outside the cutoff  radius L/2. Distributions calculated
using Equation 5.25 are in better agreement with the simulation results than the infinite system limit,
as evidenced by the dashed lines in Figure 5.5.

Finite size effects on the variance of  the distribution P (Ψ) can be quantitatively analyzed by
performing simulations for a range of N , and the results obtained for this process are shown in
Figure 5.5c. The linear dependence on L−1 expected from Equation 5.25 is confirmed, and
extrapolation to the limit L→ ∞ yields a variance of β2

⟨
(δΨ(R))2

⟩
≈ 93, much closer to the

continuum estimate of β2
⟨
(δΨ(R))2

⟩
≈ 97. When such finite size effects are taken into account,

the above formalism describes the simulation results with great accuracy, although the continuum
estimates for the energy fluctuations are still not in perfect agreement the simulation results.

We expect the remaining discrepancies in the widths of  the distributions arise from the neglect of
correlations of  order k4 and possibly higher. This is supported by comparison of  the variances of  the
SPC/E and TIP5P models, which differ more than their respective dielectric constants would predict.
There is no general relation for the fourth moment of  the charge-charge linear response function,
because it depends on the nature of  the short ranged, non-electrostatic interactions of  the fluid, and
for the one-component plasma and two-component primitive model is inversely proportional to the
compressibility [26], χ̂(4)qq

0 ∝ κ−1
T . Consequently, we expect even long-wavelength fluctuations of  the

dielectric response to depend on the microscopic details of  the fluid under consideration to a small
extent, while the static thermodynamic and structural responses on these length-scales are insensitive
to features beyond the dielectric constant.

The formalism developed herein is readily amenable to dielectrics other than water. For example,
we can also test the above approximations on dielectrics that do not screen charge as efficiently as
water, such as carbon tetrachloride (CCl4). CCl4 is tetrahedral and symmetric, and therefore does not
have a dipole moment in the gas phase, although it does have a dielectric constant greater than unity
in the liquid phase. The induced dipole in the condensed phase can be mimicked in rigid, point
charge models by adding a fixed dipole moment that reproduces the dielectric constant. This task has
been performed by Fennell et al. [111]. There both localized (L) and delocalized (D) dipole moment
models of  CCl4 were parametrized, and these are depicted in Figures 5.6a and 5.6b, respectively.
These models place a fixed dipole on CCl4 by putting a partial positive charge on the carbon atom
and a negative charge on a single chlorine atom in the localized model or negative charges on three of
the four chlorine atoms in the delocalized dipole model.

For whatever reason, I am unable to reproduce the results from the original paper with the
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(a)

(b)

(c) (d)

Figure 5.6: Schematic depiction of the (a) localized and (b) delocalized dipole models of CCl4
parametrized by Fennell et al. [111]. The positively charged carbon site is shown in cyan, uncharged
chlorine atoms are colored grey, while negatively charged chlorides are shown in red. (b) Site-site pair
distribution functions in the localized and delocalized models. Carbon-chlorine and chlorine-chlorine
distribution functions are averaged over all chlorine atoms. (d) Running average of the dielectric con-
stant for both CCl4 models under study.

parameters listed there [111]. However, the models do serve as an interesting test of  our formalism
and as a case study in dielectric response in their own right. The site-site pair distribution functions
between various sites of  CCl4 are shown in Figure 5.6c, and indicate that the bulk structure of  the two
models is identical. Despite this fact, the dielectric constants of  the two models differ significantly,
with ϵL = 1.76 and ϵD = 1.17 2. The running averages of  the dielectric constants are shown in
Figure 5.6d and were obtained from the relation

ϵ = 1 +
4πβ ⟨δM2⟩

3 ⟨V ⟩
, (5.26)

where δM = M− ⟨M⟩ and M is dipole moment of  the simulation cell. Hence, these models
represent the interesting case of  two liquids with identical bulk structure but differing dielectric
responses.

The first peak in the carbon-carbon g(r) is located at r ≈ 6.5 Å, and I have found that the

2Fennell et al. obtain nearly equal dielectric constants for the localized and delocalized models, ϵL = 2.02 and ϵD =
2.112, respectively.
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Figure 5.7: (a) Bare and (b) Gaussian smoothed charge densities for localized and delocalized dipole
models of CCl4 obtained in the presence of Gaussian test charge of magnitude Q = +1 and width
l = 8 Å. Data points are simulation results while lines in (a) and (b) are the analytic approximations
of Equations 5.14 and 5.15, respectively. Smoothed charge densities were calculated using a smooth-
ing length of σ = l. (c) Probability distributions of the interaction energy Ψ between the localized
(L) or delocalized (D) dipole models of CCl4 and a Gaussian test charge of magnitude Q = +1 and
l = 8 Å in the uniform fluid, P0(Ψ), and in the presence of the test charge, PQ(Ψ). Solid lines are
the corresponding analytic approximations given by Equation 5.24. Dashed lines are the finite size
corrected approximations to the distributions obtained with a variance estimated by Equation 5.25.

minimum LMF smoothing length needed to capture the structure of  the bulk fluid is roughly
σmin ≈ 8.0 Å. Therefore, I have chosen to insert a Gaussian of  width l = 8 Å into CCl4, ensuring that
the charge distribution acts over a length scale of  several molecules. The induced bare and smoothed
charge densities are shown in Figure 5.7. While the bare charge densities suffer from statistical noise,
they still appear to be approximated rather well by the linear response approximations derived in
Section I. Gaussian smoothing of ρqQ(r) eliminates much of  the simulation noise, and smooth profiles
are obtained for ρqσQ (r) that are very well described by Equation 5.15, shown as points in Figure 5.7b.

As was the case for water, the probability distributions of  the test charge-CCl4 interaction energy
shown in Figure 5.7c are remarkably Gaussian, evidenced by the fact that⟨
(δΨ(R))2

⟩
0
=
⟨
(δΨ(R))2

⟩
Q

. However, Equation 5.23 again overestimates the widths of  the
distributions for both L-CCl4 and D-CCl4, though much of  this overestimation is due to finite size
effects, and the distributions are almost exactly captured by estimating the variance with
Equation 5.25. It is also interesting to note that the two models differ from their respective
continuum estimates by nearly the same amount. One might expect fluctuations in the two models to
differ equally from the continuum approximations because the short ranged, non-electrostatic
interactions are nearly equivalent in the two models of  CCl4. These molecular-scale details control
the behavior of  the higher order moments of χ̂qq

0 (k) that are neglected in the continuum
approximations detailed above.
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5.4 Conductors Require More Detail

As a more rigorous test of  our ideas, we apply the above dielectric continuum formalism to a
conductor, the symmetric primitive model (SPM) electrolyte. In lieu of  the traditional SPM, which
consists of  charged hard spheres of  equal diameter, the data below is for charged WCA spheres with
equal LJ diameters, which is easier to treat using conventional molecular dynamics simulations.
However, I have carried out Monte Carlo simulations of  the traditional SPM for a few systems
studied herein, and the results obtained are in agreement with those for its WCA variant.

In a conducting medium, ϵ = ∞, and Equation 5.14 becomes

ρqQ(r) = − Q

l3π3/2
e−r2/l2 . (5.27)

Within this level of  approximation, the induced charge density is equal and opposite to the Gaussian
charge distribution itself ! Therefore, the total charge density is given by ρqtot(r) = 0, which is just a
statement of  neutrality, the zeroth moment condition [26, 107, 108, 109]. Unlike the case of  a
dielectric medium, to zeroth order, our approximation for the total charge density has no non-zero terms.
We may anticipate that at least the first non-zero term in the small k expansion of  the charge density
is needed for an accurate description of  the response of  a conducting fluid to a Gaussian test charge,
and this can be done by keeping up to the k4 term in the expansion of  the linear response function.

As in Section 5.2, we can write the charge density in k-space as

ρ̂qQ(k) ≈ −βχ̂qq
0 (k)v̂Q(k), (5.28)

and again expand the linear response function, but keeping terms to fourth order in k now,

χ̂qq
0 (k) ∼ χ̂

(0)qq
0 + k2χ̂

(2)qq
0 + k4χ̂

(4)qq
0 = k2χ̂

(2)qq
0 + k4χ̂

(4)qq
0 . (5.29)

The induced charge density can then be written as

ρ̂qQ(k) ≈ −Qe−k2l2/4 − 4πβQk2χ̂
(4)qq
0 e−k2l2/4, (5.30)

which, in r-space is

ρqQ(r) = − Q

l3π3/2
e−r2/l2 +

4πβQχ̂
(4)qq
0

l5π3/2

[(
2r

l

)2

e−r2/l2 − 6e−r2/l2

]
. (5.31)

This expression includes the first nonzero term in the small k expansion of  the total charge density,
which involves the fourth moment of  the bulk linear response function. However, χ̂(4)qq

0 has no
general analytic expression and depends sensitively on the details of  the intermolecular potentials
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(both short and long ranged), and must be determined by other means.
In analogy to the results obtained for dielectric media, we can use the expression for the charge

density in Equation 5.31 to obtain the free energy of  inserting a Gaussian test charge and the
fluctuations in the interaction energy. In this level of  approximation, the free energy ∆Gl of  inserting
a Gaussian test charge into a conducting medium is

∆Gl = − Q2

l
√
2π

(
1 +

4πβχ̂
(4)qq
0

l2

)
(5.32)

and the variance of  the interaction energy is

⟨(
δΨ(R)

)2⟩
0/Q

=
2kBTQ

2

l
√
2π

(
1 +

4πβχ̂
(4)qq
0

l2

)
. (5.33)

In order to apply Equations 5.31–5.33, we need to estimate χ̂(4)qq
0 . The generalized Debye-Hückel

(GDH) theory of  Lee and Fisher [112, 113, 114] provides an expression for the fourth-moment of
the charge-charge linear response function,

χ̂
(4)qq
0,GDH = ρξ4D

[
1 +

2

3
ln(1 + x)− 2

3
x− 1

6
x2
]
, (5.34)

where ξD =
√
kBT/(8πq2ρ) is the Debye length, q is the magnitude of  the charge of  the ions, and

x = d/ξD is the diameter of  an ion in units of  the Debye length. The GDH theory satisfies both the
zeroth and second moment conditions of  Stillinger and Lovett [107, 108, 109, 112, 114], and yields
exact results for correlations in the low density limit. However, GDH predictions are only
semi-quantitative, and in general will not yield accurate estimates of χ̂(4)qq

0 for all ρ and Γ.
Nevertheless, simulation results [114] seem to indicate that at our chosen state point, which is far
from the critical point, GDH theory will yield reasonable estimates for the fourth moment of  the
linear response function. We indeed find this to be true, as detailed below.

We probe the response of  a neutral SPM composed of N = N+ +N− = 1000 ions at a density of
ρd3 = 0.3816 and a coupling strength of Γ = βq2/d = 5 to Gaussian test charges of  varying width
and magnitude, where d ≈ σLJ is the approximate diameter of  an ion of  the SPM, with a LJ well
depth of εLJ = kBT . For all Q and l studied, we find that terms of  order k4 in the expansion of  the
linear response function (which are of  order k2 in the nonuniform charge density) are needed to
accurately describe the structural response for all r, as indicated by the smoothed charge densities
shown in Figure 5.8. However, as expected, at large enough r both expressions for the induced
charge density converge to the same value and accurately describe the asymptotic density response.
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Figure 5.8: Gaussian smoothed charge densities of the SPM in response to Gaussian charge distri-
butions of (a) varying charge with fixed width l = 2d and (b) varying width with Q = 5q. Symbols
are simulation results, the approximations to second and fourther order in the expansion of the linear
response function are indicated by dashed lines and solid lines, respectively. Gaussian smoothing was
performed using σ = 2d. (c) Probability distributions of the interaction energy Ψfor a Gaussian test
charge of magnitude Q = 5d and l = 2d in the uniform fluid, P0(Ψ), and in the presence of the test
charge, PQ(Ψ). Dashed and solid lines are the corresponding analytic approximations with the vari-
ance of the distribution given by Equations 5.23 and 5.33, respectively. (d) Variance of the interac-
tion energy as a function of L−1 for a Gaussian test charge with Q = 5d and l = 2d in the RPM. The
solid line is a linear fit to the data points and the starred data point is the continuum approximation
to the variance given by Equation 5.33.
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Fluctuations in the test charge-SPM interaction energy follow Gaussian statistics for all systems
under study. The width of  the distributions are underestimated by the continuum approximations,
again due to finite size effects, and including contributions from χ̂

(4)qq
0 slightly increases the variance.

Accounting for such finite size effects can be accomplished by combining the simple Born correction
of  Equation 5.25 with the estimate for the variance in Equation 5.33, as evidenced by the curve
labeled “FS, O(k4)” in Figure 5.8c. Therefore, the variance of  the distributions will again scale
linearly with 1/L. Indeed, simulation results obtained by varying N from 250 to 3000 ions yields this
expected scaling behavior, as shown in Figure 5.8d. In fact, the L→ ∞ limit obtained from linear
fitting of  the variance as a function of 1/L agrees well with the estimate of  Equation 5.33. In
contrast, neglect of  terms of  order k4 in the expansion of  the charge-charge linear response function
leads to an underestimation of  the infinite system limit as obtained from simulation, illustrated by the
point labeled O(k2) in Figure 5.8d. Therefore, by accounting for the leading order contribution to
the density response of  the SPM arising from short ranged interactions in an approximate manner,
we are able to completely describe the electrostatic response of  a conducting fluid to a Gaussian test
charge with quantitative accuracy.

5.5 Ewald Finite Size Effects in the Gaussian Electrostatic Potential

Before concluding this chapter, it is appropriate to briefly discuss the finite size effects that can arise
from the periodicity of  the Ewald method when using lattice summations to evaluate the interactions
between the Gaussian test charge and the dielectric or conducting fluid in which the charge is
immersed. In the continuum, infinite system case, the electrostatic potential of  such a charge
distribution can be obtained from the Poisson’s equation

∇2
r vQ(r) = −4πρq(r) = −4πQρG(r), (5.35)

where ρG(r) = (π3/2l3)−1 exp(− |r|2 /l2) is a Gaussian distribution of  width l. This can be readily
solved, (the solution is especially easy after transforming to Fourier space), and is given by

vQ(r) =
Q erf(r/l)

r
, (5.36)

which is just the long ranged portion of  the Coulomb potential as defined in LMF theory. Therefore,
the potential vQ(r) has the typical long ranged divergences associated with the Coulomb potential
when attempting to perform simulations. In simulations, however, we cannot study infinite systems,
and are instead confined to the study of  systems with a finite size. In order to give the appearance of
an infinite system, periodic boundary conditions (PBCs) are typically used, in which the central
simulation cell is replicated “to infinity” in all directions.

In order to accomplish this task, we consider an infinite periodic array of  Gaussian charge
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Figure 5.9: (a) Rotationally averaged Gaussian Ewald potentials ϕ̃EW
1 (r) for various box lengths L

compared to the full Gaussian potential erf(r/σ)/r and 1/r. (b) Gaussian Ewald potential as a func-
tion of x- and y-coordinates in the z = 0 plane, ϕEW

1 (x, y, z = 0), for L = 14.2 Å. (c) Gaussian
smoothed charge densities for simulation cells of SPC/E water corresponding to the values of L in
(a). The Gaussian test charge has width l = 3.2 Å and Gaussian smoothing of bare charge density
was performed with σ = 4.5 Å. Also shown is the Gaussian smoothed charge density obtained with-
out Ewald summation for test charge-water interactions (From vQ(r)), which is consistent with the
continuum, infinite system limit.

distributions with their corresponding uniform neutralizing background charge densities (in order to
avoid an infinite build up of  charge). The Poisson’s equation for this system is

∇2
rϕ(r) = −4πQ

[
∞∑

n=−∞

ρG(r− nL)− 1

L3

]
, (5.37)

where L is the length of  a side of  the cubic simulation cell, and n = (nx, ny, nz) is a lattice vector,
such that nα = (...,−2,−1, 0, 1, 2, ...). As one familiar with Ewald summation may have
anticipated, the solution to this equation is the long ranged portion of  the Ewald potential,

ϕEW
1 (r) =

Q

L3

∑
k ̸=0

4π

k2
e−k2l2/4eik·r − Qπl2

L3
, (5.38)

where the second term in Equation 5.38 is the potential from the neutralizing background charge
density. Note that in the usual discussions of  the Ewald potential, the substitution η = 1/l is typically
made, however, I have decided to use l here to make clear any connections with LMF theory and our
use of  Gaussian test charges throughout this chapter.

Due to the periodicity of  the system, the Gaussian Ewald potential is only equal to vQ(r) in the
limit L→ ∞. For finite L, ϕEW

1 (r) < vQ(r), and the Ewald potential and its derivative must be
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continuous at the edge of  the central simulation cell. Therefore, the shape of  the Gaussian Ewald
potential is not spherically symmetric and must differ from that of  its infinite limit, vQ(r). The
rotationally averaged potentials

ϕ̃EW
1 (r) =

1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θϕEW
1 (r, φ, θ), (5.39)

shown in Figure 5.9a, display significant finite size effects and only slowly approach vQ(r) as L is
increased. Indeed, ϕ̃EW

1 (r) ̸= vQ(r) even for L = 100 Å!
Similar to what was found by Levy and coworkers [95] for the case of  a periodic array of  point

charges, the periodic Ewald potential ϕEW
1 (r) of  an array of  Gaussian charges is not spherically

symmetric, as illustrated by ϕEW
1 (x, y, z = 0), shown in Figure 5.9b for a representative value of L.

Therefore, when determining the response of  a dielectric fluid to a Gaussian charge distribution
using PBCs, one must take into account both the finite-size effects and the asymmetry of  the
potential. Thus, we should not expect the response of  a dielectric to ϕEW

1 (r) to be the same as the
response of  the same material to vQ(r), even for large box sizes.

Indeed, the Gaussian smoothed charge densities obtained for SPC/E in the presence of  such a
periodic array of  Gaussian test charges shown in Figure 5.9c exhibit finite size effects consistent with
the spherically averaged potentials shown in Figure 5.9a. While the effects of  the Ewald periodicity
are readily observed near r = 0, with ρqσ(0) decreasing toward the infinite limit with increasing L,
interesting non-physical effects are found at large distances. In particular, ρqσ(r) changes sign near
the point where the corresponding potential ϕ̃EW

1 (r) becomes negative. This does not occur in the
absence of  periodicity, and indeed our theoretical approximations for the charge density predict no
such “overcharging” behavior, in which a net charge of  opposite sign builds up around the Gaussian
test charge. These effects are not expected in a “real,” physical fluid, and is precisely why Ewald
summation was not used to evaluate test charge-water interactions when obtaining the data used
throughout most of  this chapter.

5.6 Conclusions

In this chapter, we have examined the response of  dielectric and conducting fluids to a Gaussian test
charge distribution. We presented a theoretical formalism to estimate the structural and
thermodynamic response of  these fluids in a quantitatively accurate manner through physically sound
approximations. It was shown that the structural response of  a dielectric fluid to Gaussian charges
depends only on the dielectric constant and is insensitive to other molecular-scale details. The
analogous response in a conducting fluid depends only slightly on the short ranged details of  the
models. In both dielectric and conducting fluids, a quantitatively accurate description of  the observed
Gaussian energy fluctuations requires some molecular-scale details and the finite size of  the system
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must be taken into account.
These developments will prove useful to estimate ion solvation thermodynamics by simulation.

Through the use of  the LMF-based solvation process in Figure 5.3, one can calculate the far field
electrostatic component of  the free energy analytically. The free energy contributions from the
remaining steps must be obtained from simulation. However, one can again use ideas from LMF
theory, especially the solvation theory developed in the next chapter, to obtain the remaining portions
of  the free energy from computationally efficient simulations of  purely short ranged systems.

The formalism presented herein can also be utilized to determine dielectric constants from the
structural response of  a dielectric fluid to the presence of  a Gaussian test charge. For example, one
can determine ρqσ(r) from simulation with high accuracy, then fit this smoothed charge density to
Equation 5.15 to obtain ϵ. In addition, the structural response could even be determined from
simulations of  the bulk fluid using Equation 5.16, readily allowing for the determination of  the charge
density induced by a range of  Gaussian test charges with varying Q and l. This may find use in
determining dielectric constants from computationally intense quantum mechanics-based
simulations, where the continuous nature of  the electron density makes it difficult to define molecular
units and expressions like Equation 5.26 become intractable.

Another avenue for further investigation is to examine the state point-dependence of  the
approximations developed herein for both dielectric and conducting systems. In particular, we expect
the above formalism to break down in the critical region; it has been found that the Stillinger-Lovett
second moment condition breaks down and χ̂(4)qq

0 diverges at the critical point [114]. However,
Equation 5.31 may be used to determine χ̂(4)qq

0 away from the critical point from fits to ρq(r) and
ρqσ(r), in analogy to the above discussion for the dielectric constant, and may even be used to study
the divergence of  charge-charge correlations on the approach to Coulomb criticality.
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Good theories are either Gaussian or everything.

Lawrence R. Pratt

6
Free Energy Calculations with Local Molecular

Field Theory

6.1 Introduction

The complete description of  any chemical or biological process requires an understanding of  the
underlying free energy landscape. Consequently, a fundamental problem in statistical mechanics

is the development of  accurate and efficient means to calculate thermodynamic properties of
molecular systems. Much progress in this area has been made in the past fifty years, from the
development of  a solid foundation consisting of  perturbation theory [115, 116], and thermodynamic
integration [117], to advanced computer simulation techniques to overcome sampling bottlenecks,
like the umbrella sampling methods used throughout this thesis [118]. Free energy calculations have
even been extended to non-equilibrium systems, with the advent of  the Jarzynski equality [119],
Crooks fluctuation relation [120], and techniques for sampling in the space of  trajectories [121], as
opposed to traditional sampling performed in configuration space.

The development of  such techniques for free energy computation in conjunction with recent rapid
technological growth has revolutionized the area of  computer simulations. Despite the immense
progress made in free energy calculation methodology, all are plagued by the same inefficiencies
when electrostatic interactions are present. These inefficiencies arise from the long range nature of
the Coulomb potential, which is typically evaluated using lattice summation techniques like that due
to Ewald [31]. The computational time associated with the Ewald summation in typical
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implementations scales as O(N2), where N is the number of  charged particles in the system. Even
its most efficient implementation, the particle mesh Ewald (PME) method, scales with the number of
sites as O(N logN), but with a large prefactor, and the method does not scale well in
massively-parallel simulations [122]. Thus systems with Coulomb interactions present significantly
more computational problems than a system with only short ranged interactions, like a LJ fluid,
which scales linearly with N . The situation only worsens when one considers the fact that, unlike the
internal energy or pressure, the free energy cannot typically be obtained directly from a single
simulation, as will be discussed in detail later, but one must perform a series of  long computer
simulations to calculate even a single free energy or free energy landscape.

In addition to sampling issues, the use of  lattice summation techniques with periodic boundary
conditions in finite size systems lead to significant errors to due artifacts in the periodic potential. In
particular, spurious interactions between images of  solutes in nonuniform systems can occur, as
observed for proteins in water [123]. In addition, the forced neutrality and continuity of  the potential
and force at the boundaries of  the simulation cell lead to distorted electrostatic potentials that are not
spherically symmetric [95], as discussed in the previous chapter.

Local molecular field theory is a promising avenue for substantially improving all free energy
calculations by removing many of  the computational and conceptual burdens associated with long
ranged interactions. LMF theory prescribes a way to obtain the structure of  a full system, with
computationally difficult long ranged interactions, from a mimic system wherein particles interact
with short ranged potentials only. It will be shown that LMF theory contrasts traditional “top-down”
approaches to molecular structure and thermodynamics, like classical DFT [10], wherein
thermodynamic functions obtained from uncontrolled approximations to the free energy functional
itself  are differentiated to obtain structural properties. Instead, LMF theory can be considered a
“bottom-up” approach to thermodynamics. LMF theory first focuses on the underlying forces in a
molecular system, and then determines accurate structural properties by compensating for the
averaged effects of  long ranged interactions with the presence of  an effective field in the mimic
system. Once the desired structure is obtained, we can integrate over structural properties in order to
obtain thermodynamic properties like the free energy, akin to what is done in perturbation theories of
uniform fluids [6]. Hence, LMF theory starts at the “bottom” with intermolecular forces, and
successively integrates “up” to obtain thermodynamics.

In this chapter, we develop the formalism for performing LMF-based free energy calculations and
demonstrate its accuracy on numerous systems of  interest. We focus on three major classes of  free
energy calculations [116], (i) solvation free energies, (ii) alchemical transformations, and (iii) potentials
of  mean force. The basis for LMF free energy calculations is developed in the next section within the
context of  solvation free energies, wherein a solute is gradually transformed from a non-interacting
particle into the full solute of  interest. This LMF approach can then be readily applied to the process
of  changing one solute into another, through modification of  the solute-solvent interaction potentials.
The study of  such alchemical transformations is performed in Section 6.3. We then extend the LMF
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formalism to calculate free energies as a function of  an order parameter describing a process of
interest. The calculation of  such potentials of  mean force involves combining LMF theory with
umbrella sampling, and this is accomplished in Section 6.4 before concluding the chapter in
Section 6.5.

6.2 LMF Theory of  Solvation

In this section, we derive the basis of  the LMF theory-based framework for free energy calculations.
For simplicity and clarity, we consider the solvation of  a rigid solute fixed at the origin in a single
component fluid as a basis for the treatment of  more general solvation phenomena. Figure 6.1
schematically depicts the solvation of  such a solute in a LJ fluid, but similar considerations
immediately apply to more complex solvents, including mixtures and fluids with long ranged
Coulomb interactions.

We consider the process of  gradually “turning on” a solute-solvent interaction potential ϕ(r), such
that the solvation free energy Ωsolv is the difference in the Grand free energy of  the solvent-solute
system and the pure solvent in zero solute field: Ωsolv[ϕ] ≡ Ω[ϕ]− Ω[ϕ = 0], such that Ωsolv is a
functional of  the solute field ϕ. The lower left panel of  Figure 6.1 shows the core positions of  the
mobile bulk solvent (M) in a typical configuration. The solvent molecules interact with a pair potential
u(r) = u0(r) + u1(r), where u1(r) is the long ranged, slowly varying portion of  the solvent-solvent
potential. This long ranged portion of  the potential can arise from electrostatic interactions or the
attractive tail of  the LJ potential, for example. The lower right panel of  Figure 6.1 schematically
depicts an equilibrium configuration of  the full solute-solvent system, where the solute (S) has been
inserted into the fluid. The solute-solvent potential ϕ(r) is harshly repulsive at short distances where
cores will overlap, and may also contain other short ranged forces describing hydrogen bonding and
other local interactions. There will also exist long ranged solute-solvent interactions in general, but
we can assume that far from the solute an unperturbed, neutral bulk solvent will exist.

In practice, the solvation free energy cannot generally be computed by simulating only the two
states depicted in the lower leg of  Figure 6.1. Instead, one must consider the gradual transformation
of  a non-interacting point solute into the full solute through a series of  generally non-physical
intermediate states. Such stratification techniques can be performed with high accuracy, but the
transformation process typically must be carried out in small steps, especially when the harshly
repulsive core interactions are altered between neighboring states. In addition, this multistep process
requires an accurate treatment of  long ranged interactions at every step. This is particularly
cumbersome when Coulomb interactions are present, since standard lattice summation techniques,
like those due to Ewald [31] and Lekner [124], add significant overhead to the simulation time at each
step. We indicate this general problem by using a red arrow to connect the two lower panels of
Figure 6.1.

The LMF theory of  solvation presented herein introduces a thermodynamic cycle involving a short
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ranged mimic system that allows one to eliminate much of  the overhead arising from conventional
treatments of  long ranged forces. Moreover, it provides a natural and physically suggestive way of
partitioning the free energy into short ranged or near field and long ranged or far field components that
is conceptually related to some elements of  the formally exact partitioning scheme used with great
success in the quasichemical theory of  solvation [82, 125].

The LMF thermodynamic cycle uses the two upper panels in Figure 6.1, which describes solvation
in a mimic system with short ranged intermolecular interactions. The upper left panel illustrates a
configuration of  the strong coupling or mimic solvent (M0), such that the red color indicates
truncated solvent-solvent interactions (u0(r) for a LJ fluid). The slowly varying, long ranged
components of  the intermolecular forces tend to cancel in a uniform fluid, and therefore the particle
arrangements are similar in the bulk M and M0 panels.

Solvation in the mimic system involves insertion of  a mimic solute (SR), described by the
renormalized potential ϕR given by LMF theory, and the determination of  the free energy associated
with this process is discussed later in Section 6.2.1. This potential contains all the short ranged
solute-solvent interactions ϕ0(r) that are in the full potential ϕ(r). In addition, the averaged effects of
the slowly-varying long ranged interactions on the solvent structure are taken into account using
LMF theory, as suggested by the patterning of  the solute color in the upper right panel of  Figure 6.1.

The solvation free energy of  the mimic system ΩR,solv[ϕR] can be determined using conventional
methods, and will be discussed in more detail below. Since ϕR(r) contains all the short ranged
portions of ϕ(r), this process is inherently difficult, and will typically contain just as many
intermediate steps as the analogous process in the full system. However, each step can be carried out
more efficiently because we have eliminated the overhead arising from the evaluation of  long ranged
forces. Since the simulations involve non-physical intermediate states, there is no need to confine our
calculations to “real” physical systems, and the desired transformations can be carried out more
efficiently in the simpler mimic system with no loss of  accuracy. This partial simplification is depicted
by the red and green stripes on the arrow connecting the upper panels in Figure 6.1, and contrasts
with the red arrow connecting the lower panels.

The difference in the solvation free energy between the full and mimic systems is given by the sum
of  the free energy changes between the lower and upper panels on the left and right sides of
Figure 6.1, indicated by the vertical green arrows. We derive a simple, analytic expression for this free
energy difference ΩLMF[ϕR] herein, and the green arrow color indicates the simplicity of  this step. We
start by linearly coupling the slowly-varying portion of  the solvent-solvent interaction potential with a
parameter λ,

u(λ)(r) = u0(r) + λu1(r).

The renormalized solute-solvent field is also coupled to λ, but no assumptions are made regarding
the exact λ-dependence of ϕ(λ)

R (r) yet. However, when λ = 0, ϕ(λ)
R (r) = ϕR(r), corresponding to the

mimic system with bulk density ρB and chemical potential µR. The bare field ϕ(r) is recovered when
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Figure 6.1: Thermodynamic cycle for LMF theory of solvation. The bottom leg of the cycle corre-
sponds to inserting a solute (S) into a mobile solvent (M), both of which are described by short and
long ranged interactions. This process is characterized by the solvation free energy Ωsolv. The top leg
of the cycle depicts the insertion of a LMF-based renormalized solute (SR) into a short ranged mobile
solvent (M0), such that the systems in both the upper left and upper right panels are described only
by short ranged interactions, and the solvation free energy in this mimic system is ΩR,solv. The sum of
the free energies of the paths depicted by green arrows is ΩLMF, as described in the text.
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λ = 1, such that this state corresponds to the full system with bulk density ρB and chemical potential
µ. We seek to determine the free energy difference between these two systems.

First note that the grand partition function of  state λ can be written as

Ξλ = Tr
R

{
e−βHλ(R)

}
, (6.1)

where Tr {·} ≡
∑

N

[
N !Λ3N

]−1 ∫
dR {·} indicates the classical trace, such that Λ is the usual de

Broglie wavelength, and R is a point in phase space [126]. We have also defined the Hamiltonian

Hλ(R) = Φλ(R) + U0(R) + λU1(R), (6.2)

where Φλ(R) =
∫
drφλ(r)ρ(r;R), such that φλ(r) ≡ ϕ

(λ)
R (r)− µλ is the intrinsic chemical potential. The

quantities U0(R) and U1(R) are the total energies from the short ranged and long ranged
solvent-solvent potentials, respectively, at the phase space point R.

The grand free energy of  state λ is defined by βΩλ ≡ − lnΞλ, and we proceed by differentiating
this free energy with respect to λ,

∂βΩλ

∂λ
=

Tr
{[
β dΦλ(R)

dλ
+ βU1(R)

]
e−βHλ(R)

}
Tr
{
e−βHλ(R)

}
=

⟨
β
dΦλ(R)
dλ

+ βU1(R)
⟩

λ

, (6.3)

where ⟨· · · ⟩λ indicates an ensemble average in the system with coupling parameter λ. This is a classic
result, and appears as an intermediate step when obtaining free energy differences by thermodynamic
integration [26]. When U1(R) is given as a sum of  pair interactions, this can be equivalently written in
a form more conducive to LMF theory, such that the singlet and pair density distribution functions
appear:

∂βΩ(λ)

∂λ
= β

∫
dr
dφλ(r)
dλ

ρλ(r) +
β

2

∫
dr
∫
dr′ρ(2)λ (r, r′)u1(|r− r′|), (6.4)

where ρλ(r) and ρ(2)λ (r, r′) are the singlet and pair density distribution functions in the system with
coupling parameter λ.

To obtain the free energy difference between the full and mimic systems, we integrate over the
coupling parameter λ. As noted by Weeks [127], because the singlet density at the endpoints are
equivalent by definition, ρλ=1(r) = ρλ=0(r), we can choose a particular integration path in λ-space,
or equivalently the lambda dependence of ϕ(λ)

R (r), such that the singlet density remains unchanged
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for all λ, ρλ(r) = ρ(r). Performing the integration for this path in Equation 6.4 yields

βΩ[ϕ]− βΩR[ϕR] = β

∫
drρ(r) [ϕ(r)− µ− ϕR(r) + µR]

+
β

2

∫ 1

0

dλ

∫
dr
∫
dr′ρ(2)λ (r, r′)u1(|r− r′|), (6.5)

where we have used the fact that Ωλ=1 = Ω[ϕ] is the free energy of  the full system, and
Ωλ=0 = ΩR[ϕR] is the free energy of  the mimic system.

At this point, we note that the solvation free energy is defined as the free energy difference
between the system with and without a solute, Ωsolv[ϕ] ≡ Ω[ϕ]− Ω[ϕ = 0]. This allows for the use
of  Equation 6.5 to write the difference in solvation free energies between the full and mimic systems,

βΩsolv[ϕ]− βΩR,solv[ϕR] = β

∫
dr[µR − µ][ρ(r)− ρB]− β

∫
drρ(r)[ϕR(r)− ϕ(r)]

+
β

2

∫ 1

0

dλ

∫
dr
∫
dr′[ρ(2)λ (r, r′)− ρ

(2)
B,λ(|r− r′|)]u1(|r− r′|), (6.6)

where ρ(2)B,λ(r) is the pair density distribution in the bulk solvent. Equation 6.6 is an exact formula for
the solvation free energy difference corresponding to the green vertical arrows in Figure 6.1.
However, the last term involves the partially coupled nonuniform pair distribution function
ρ
(2)
λ (r, r′), which in general varies with λ even though the singlet density remains constant, making

this term seem prohibitively complicated for practical use. But we show here that when LMF theory
provides an accurate description of  the structure of  the system, we obtain a very simple and accurate
approximation for the right hand side of  Equation 6.6.

In order to obtain this expression, we note that the first term in Equation 6.6 generates a Legendre
transform to the intrinsic free energy

W [ρ] ≡ Ω[ϕ]−
∫
drρ(r)[ϕ(r)− µ], (6.7)

which is explicitly a functional of  the density and regularly appears in classical density functional
theories of  fluids [10]. Equation 6.6 can then be exactly rewritten in this ensemble as

β(Wsolv[ρ]−WR,solv[ρ]) =
β

2

∫ 1

0

dλ

∫
dr
∫
dr′[ρ(2)λ (r, r′)− ρ

(2)
B,λ(|r− r′|)]u1(|r− r′|). (6.8)

The free energies in Equation 6.8 are all functionals of  the common singlet density
ρ(r) = ρλ(r) = ρR(r) because of  the integration path we have chosen. By definition of  the Legendre
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transform, the functional derivative of  the intrinsic free energy with respect to the singlet density is

δW [ρ]

δρ(r)
= −φ(r) = µ− ϕ(r), (6.9)

with an analogous relation holding for the mimic system. Thus, one can functionally differentiate
Equation 6.8 to obtain a formally exact relation between ϕR(r) and ϕ(r):

βϕR(r) = βϕ(r) +
δ

δρ(r)

{
β

2

∫ 1

0

dλ

∫
dr
∫
dr′[ρ(2)λ (r, r′)− ρ

(2)
B,λ(|r− r′|)]u1(|r− r′|)

+ β

∫
dr[ρ(r)− ρB][µR − µ]

}
. (6.10)

We have chosen constants so that the term in the braces vanishes in the uniform bulk system with
singlet density ρ(r) = ρB.

The LMF Equation 1.7, derived independently by an approximate integration of  the first member of
the Yvon-Born-Green hierarchy of  equations relating intermolecular forces to induced structure [1],
gives a separate and very accurate relation between ϕR(r) and ϕ(r). It can be exactly rewritten in a
form analogous to the exact Equation 6.10 as

βϕR(r) = βϕ(r) +
δ

δρ(r)

{
β

2

∫
dr
∫
dr′[ρ(r)− ρB][ρ(r′)− ρB]u1(|r− r′|)

}
, (6.11)

where constants have been chosen such that the term in the curly braces again vanishes in the bulk.
If  the LMF Equation 6.11 is accurate, we can now subtract Equation 6.11 from Equation 6.10 and

formally perform the functional integrals over ρ(r) to obtain

β

2

∫ 1

0

dλ

∫
dr
∫
dr′[ρ(2)λ (r, r′)− ρ

(2)
B,λ(|r− r′|)]u1(|r− r′|) + β

∫
dr[ρ(r)− ρB][µR − µ]

=
β

2

∫
dr
∫
dr′[ρ(r)− ρB][ρ(r′)− ρB]u1(|r− r′|). (6.12)

Thus, the complicated formal expression inside the curly braces in Equation 6.10 involving the
nonuniform pair density and exact values of µ and µR is equivalent to the simple mean-field like
expression given by Equation 6.11 where only nonuniform singlet densities appear! Moreover, we
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can utilize the LMF equation to exactly reexpress Equation 6.12 as

β

2

∫ 1

0

dλ

∫
dr
∫
dr′[ρ(2)λ (r, r′)− ρ

(2)
B,λ(|r− r′|)]u1(|r− r′|)

=
β

2

∫
dr[ρ(r)− ρB][ϕR(r)− ϕ(r)]− β

∫
dr[ρ(r)− ρB][µR − µ], (6.13)

an even simpler expression involving integration of  the self-consistent LMF potential ϕR(r).
Equation 6.13 can then be substituted for the complicated RHS of  Equaton 6.8.

Making the Legendre transform back to the grand ensemble, the solvation free energy in the full
system can be written as

βΩsolv[ϕ] = βΩR,solv[ϕR]−
β

2

∫
dr[ρ(r) + ρB][ϕR(r)− ϕ(r)], (6.14)

such that

βΩLMF[ϕR] = −β
2

∫
dr[ρ(r) + ρB][ϕR(r)− ϕ(r)] (6.15)

is the free energy contribution due to the processes indicated by the green vertical arrows of  the
thermodynamic cycle in Figure 6.1. Equation 6.15 is a simple expression for the free energy
difference between the full and mimic systems that can be readily evaluated analytically, and is the
principle result of  this section.

Finally, we note that Equation 6.14 can be equivalently written as

βΩsolv[ϕ] = βΩR,solv[ϕR]−
β

2

∫
dr
∫
dr′
[
ρ(r)ρ(r′)− ρ2B

]
u1(|r− r′|), (6.16)

which could have been obtained by using uncontrolled mean field (MF) approximations everywhere
in Equation 6.6, as is typically done in classical density functional theory (DFT) descriptions of  fluids;
this is demonstrated in Appendix H. However, in deriving our central result Equation 6.15 using the
LMF equation, which itself  is obtained from rigorous statistical mechanics relating structure to
intermolecular forces, we also indicate the conditions under which the MF approximations commonly
used in DFT are accurate. In particular, Equation 6.16 holds only when the LMF equation is accurate,
or equivalently, when the long-ranged u1(r) is chosen to vary sufficiently slowly over characteristic
nearest neighbor distances and u0(r) captures the local interactions on these molecular length-scales.

123



Figure 6.2: Schematic illustration of the decomposition of the mimic system solvation free energy,
ΩR,solv, into the solvation free energy of the SCA system, Ω0,solv, and the free energy of turning on the
slowly varying portion of the LMF, ΩR1.

6.2.1 Calculating the Free Energy of  the Mimic System

The solvation free energy (SFE) can be determined from simulation as

Ωsolv[ϕ] = ΩR,solv[ϕR] + ΩLMF[ϕR], (6.17)

where the formalism is readily extended to ensembles other than the Grand ensemble 1 We can thus
very simply correct the SFE of  the mimic system using LMF theory, but we still need to determine
the free energy of  the mimic system, ΩR,solv. The process for doing this is sketched in Figure 6.2.

The SFE in the mimic system, ΩR,solv[ϕR], can be further divided into the solvation free energy of
the SCA system in the known strong coupling field ϕ0(r), Ω0,solv[ϕ0], and the free energy of  turning
on the slowly-varying portion of  the LMF potential, ΩR1[ϕR1], such that

ΩR,solv[ϕR] = Ω0,solv[ϕ0] + ΩR1[ϕR1]. (6.18)

The free energy of  the SCA can be determined through conventional means by “growing” a point
solute into the full SCA solute described by the solute-solvent field ϕ0(r). In general this will require
multiple intermediate states and changes in the harshly repulsive core interactions between states, as
indicated by the red arrow between the first two panels of  Figure 6.2.

The quantity ΩR1 is the free energy of  turning on the slowly varying portion of  the LMF,
ϕR1(r) = ϕR(r)− ϕ0(r). This process is schematically illustrated by the change from the center to

1In the calculations below we will concern ourselves with the isothermal-isobaric ensemble, which is characterized by
the Gibbs free energy G, and all solvation free energies calculated from simulations will then be referred to by ∆G, as in
Chapter 3.
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right panels in Figure 6.2. The free energy of  turning on this field can be exactly written as

βΩR1 = − ln
⟨
e−βΦR1

⟩
0
= − ln

∫
dΦR1P0(ΦR1)e

−βΦR1 . (6.19)

In Equation 6.19, ⟨· · · ⟩0 indicates an ensemble average in the strong-coupling system, where the
solute field is given by the short ranged field ϕ0(r), ΦR1 =

∑
i ϕR1(ri), and P0(ΦR1) is the probably

distribution of ΦR1 calculated from configurations in the strong-coupling system.
This contribution to the free energy can be written equivalently in terms of  averages in the mimic

system,

βΩR1 = ln
⟨
eβΦR1

⟩
R
= ln

∫
dΦR1PR(ΦR1)e

βΦR1 , (6.20)

where ⟨· · · ⟩R indicates an ensemble average in the presence of  the field ϕR(r) (the mimic system) and
PR(ΦR1) is the probability of ΦR1 in the mimic system. Due to the slowly-varying nature of ϕR1(r),
we expect the distributions P0(ΦR1) and PR(ΦR1) to be Gaussian to a good approximation, allowing
the use of  computationally efficient approximations, and this is indicated by the green arrow in
Figure 6.2. If  this is the case, ΩR1 can be estimated from cumulant expansions of  Equations 6.19
and 6.20, truncated at second order [58, 116]:

βΩR1 = β ⟨ΦR1⟩0 −
β2

2

⟨
(δΦR1)

2⟩
0
= β ⟨ΦR1⟩R +

β2

2

⟨
(δΦR1)

2⟩
R
, (6.21)

where δΦR1 = ΦR1 − ⟨ΦR1⟩. Averaging the two equivalent forms of  the free energy in Equation 6.21
yields,

βΩR1 =
β

2
[⟨ΦR1⟩0 + ⟨ΦR1⟩R] +

β2

4

[⟨
(δΦR1)

2⟩
R
−
⟨
(δΦR1)

2⟩
0

]
. (6.22)

However, the probabilities of  the energy ΦR1 in the strong-coupling and mimic systems are related
by the following exact relation due to Bennett [57],

PR(ΦR1) = e−β(ΦR1−ΩR1)P0(ΦR1). (6.23)

Therefore, if  one distribution is approximately Gaussian, the other will be Gaussian with the same
variance, such that the variances in the second term of  Equation 6.22 cancel. Thus, our final
Gaussian estimate for the free energy of  turning on the field ϕR1(r) is given by

βΩR1 =
β

2
[⟨ΦR1⟩0 + ⟨ΦR1⟩R] . (6.24)
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Figure 6.3: (a) Nonuniform density around a hard sphere solute of radius RHS ≈ 2σLJ in a LJ fluid
and in its corresponding WCA reference system and LMF mimic system. The inset shows the bare
and renormalized solute fields, ϕ(r) and ϕLJ

R (r), respectively. (b) Solvation free energies as a function
of solute radius in LJ and WCA fluids. Stars indicate the results obtained using the LMF theory of
solvation. The inset in (b) depicts the probability distributions P (βΦR1/2) in the mimic (PR) and
SCA (P0) systems on a logarithmic scale. Given the very different densities shown in (a), the distribu-
tions of the mimic and SCA systems do not overlap significantly, and therefore an intermediate state
sampled with a solute-solvent field ϕR1(r)/2 was also simulated in order to obtain the mimic system
free energy using stratification. The probability distribution obtained from sampling this ensemble is
indicated by P1/2. Gaussian distributions with the same mean and variance as the corresponding sim-
ulation data are shown as the solid lines.

We will show below that the distributions of  the slowly-varying portion of  the renormalized field
indeed turn out to be remarkably Gaussian for all systems under study, and therefore Equation 6.24
provides an accurate estimate of ΩR1. Now that we have laid the theoretical foundation for
determining solvation free energies with LMF theory, we demonstrate its accuracy below with several
non-trivial examples in the subsequent sections.

6.2.2 Hard Sphere Solvation

The crux of  the LMF theory of  solvation is that good thermodynamic properties follow from an
accurate representation of  the structure in a molecular system. Therefore, we first show that LMF
theory can quantitatively capture the drying observed at the surface of  a hard sphere of  radius
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RHS ≈ 2σLJ in a LJ fluid in Figure 6.3a. This is a challenging problem for LMF theory since there is a
large change in the density due to the unbalanced LJ forces; indeed this presents more difficulties
than almost all applications of  LMF theory to Coulomb interactions, as will be discussed later. While
a LJ fluid dries at the interface of  a large purely repulsive solute due to unbalanced forces arising from
the bulk region, removal of  such forces in the corresponding WCA reference system leads to wetting
of  the solute surface and there is a very large change in density between the blue and red curves in
Figure 6.3a. Nevertheless, drying can be obtained with a WCA solvent by accounting for the averaged
effects of  such unbalanced LJ forces at the fluid-solute interface with the LJ LMF

ϕ
LJ
R (r) = ϕ(r) +

∫
dr′ [ρR(r′)− ρB]u1(|r− r′|), (6.25)

which is compared to the bare solute-solvent potential ϕ(r) in the inset of  Figure 6.3a. The
renormalized potential ϕLJ

R (r) provides an effective “push” on solvent particles near the interface,
such that the density in the mimic system is nearly identical to that in the full LJ system, as shown by
the curve labeled “LMF” in Figure 6.3a. Therefore, LMF theory can readily account for the
significant structural change induced by interfacial unbalancing potentials with quantitative accuracy.

From the accurate structure obtained from LMF theory, we can proceed to study the solvation
thermodynamics of  hard spherical solutes of  various sizes. As demonstrated in Chapter 3, solvation
free energies of  hard spherical solutes display a crossover from scaling with solute volume to scaling
with solute surface area at RHS ≈ σLJ, consistent with the appearance of  interfacial drying. It was also
shown that this crossover does not occur if  the unbalanced forces arising from the LJ attractions of
the fluid are not taken into account because the solvent wets the solute surface for all solute sizes, and
this is again shown in Figure 6.3. After utilizing LMF theory to determine the structural properties of
the mimic system, the LMF theory of  solvation is used to integrate over this structure and obtain
estimates for the solvation free energies.

The hard sphere solvation free energies per unit solute surface area determined through this
LMF-based framework are compared with those obtained in the full LJ and WCA systems in
Figure 6.3b. The LMF free energies recover the length scale transition and reproduce the solvation
free energies with quantitative accuracy. We should also emphasize that the Gaussian approximation
Equation 6.24 holds remarkably well when estimating ∆GR1, even in cases where significant
structural transitions occur upon the inclusion of ϕR1(r), as shown in the inset of  Figure 6.3b.
However, when there is low phase space overlap between the SCA and mimic systems, and therefore
distributions of  the energy do not display significant overlap (Figure 6.3b), an intermediate state
needs to be studied in order to employ Gaussian approximations to the free energy [58]. For
example, to determine the free energy of  the state shown in Figure 6.3a, RHS/σLJ = 2, we have also
simulated a system with a nonphysical, partially coupled LMF, ϕ(1/2)

R (r) = ϕR(r)/2. The free energy
∆GR1 was then determined from these three states as the sum of  the Gaussian approximated free
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energy changes between neighboring states.
A similar length scale transition occurs when apolar particles are solvated by water, although the

details of  the transition in aqueous media with hydrogen bonds differ in many important aspects, as
discussed in Chapter 3. There it was demonstrated that this length scale transition also occurs when
long ranged electrostatics are neglected in GT water, although the lower surface tension of  GT water
leads to solvation free energies that are somewhat less unfavorable than those in the full SPC/E
model, Figure 6.4a.

We can again use the LMF-based framework for solvation free energies developed above to obtain
accurate estimates of ∆G while neglecting long ranged electrostatic interactions. The situation is
even more favorable here than for the LJ system, because the Coulomb interaction is more
slowly-varying at long distances and we can choose the smoothing length σ in an optimal manner.
Therefore, in contrast to the above example of  solvation in a LJ fluid, the phase space of  the GT SCA
system is sufficiently close to that of  the full system, and accurate estimates for VR1(r) and ρqR(r) can
be obtained by iterating over GT water configurations using only LRT 2. Therefore, simulations of
the mimic system do not need to be performed. Within the accuracy of  LRT, the free energy
difference between the SCA and mimic systems can be approximated as

∆GR1 ≈
1

2
[⟨ΦR1⟩0 + ⟨ΦR1⟩R] =

1

2

∫
dr [ρq0(r) + ρqR(r)]VR1(r), (6.26)

where the subscript 0 indicates quantities evaluated in the SCA system and the averages in the mimic
system are obtained from GT configurations using LRT. Combining the LRT estimates for ρqR(r) and
∆GR1 with the LMF theory for solvation, we obtain accurate full system free energies from
simulations of  a system without long ranged electrostatics, as shown by the curve labeled
“LRT-LMF” in Figure 6.4a.

While the LMF free energy “corrections” appear small on the scale of  Figure 6.4a, they become
significant for large solute sizes. Differences between the full free energies and those obtained in GT
water and from the LRT-LMF estimates are shown in Figure 6.4b. The difference
∆∆G = ∆GSPC/E −∆G is roughly zero in both the GT and LMF systems for small solute sizes, as
one might expect because the structure and thermodynamics is determined exclusively by local
interactions in this regime. In the large solute regime, however, long ranged interactions become
increasingly important, and solvation free energies in GT water differ from those in SPC/E water by
as much as 9 kBT for a solute with a radius of  11.5 Å, and this difference will continue to grow with
increasing solute size. The LMF estimates for these free energies readily correct these errors and

2When LRT can be used with high accuracy, this also indicates that the probability distributions of  the relevant field (here
the LMF) will follow a Gaussian distribution and the distributions for the two states in question will overlap significantly.
Therefore, ∆GR1[VR1] can be obtained with high accuracy from the Gaussian approximation Equation 6.24, even more so
than was the case for ∆GR1[ϕ

LJ
R1], due to the very slowly-varying nature of v1(r) = erf(r/σ)/r.
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Figure 6.4: (a) Solvation free energies of hard spheres in SPC/E and GT water as a function of
solute radius. Stars indicate solvation free energies determined from configurations in the strong-
coupling, GT water system obtained through a combination of linear response theory (LRT) and LMF
theory (LRT-LMF). (b) Difference between the GT or LRT-LMF solvation free energies and those
obtained in SPC/E water, ∆∆G = ∆GSPC/E −∆G.

∆∆GLRT−LMF fluctuates about zero for all solute sizes, indicating good agreement with the full
system results.

Another stringent test of  the LMF theory of  solvation is to examine hard sphere solvation in
GTRC water, in which the LJ attractions are further removed from GT water. Computing solvation
free energies of  GT water from a GTRC mimic system is completely analogous to computing
solvation free energies in the LJ fluid from a WCA mimic system. Removal of  the LJ attractions in
GTRC water suppresses any drying at the solute-water interface, and therefore eliminates the length
scale transition in solvation free energies, Figure 6.5a. As was done for the WCA fluid, LMF theory
can be used to account for the averaged effects of  LJ attractions through the field ϕLJ

R (r). Upon
doing so, drying is recovered, and quantitatively accurate results for the solvation free energies are
obtained from the LMF-based framework, indicated by “LMF” in Figure 6.5a.

Inherent in the LMF theory of  solvation is a natural separation of  short and long ranged
interactions. The near field contribution to the solvation free energy is equivalent to that of  the
approprate SCA reference system, ∆G0. The remainder of  the solvation free energy is due to far
field components, ∆GLR = ∆GR1 +∆GLMF. For the case of  hard sphere solvation in water, we can
choose the appropriate SCA system to be GTRC water, so that there are two far field components of
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Figure 6.5: (a) Solvation free energies of hard spheres in GT and GTRC water as a function of so-
lute radius. Stars indicate solvation free energies determined from LMF theory for the LJ attractions.
(b) Contributions to the solvation free energies from long ranged LJ attractions (∆GLJ

R1) and long
ranged electrostatics (∆Gq

R1) as a function of solute size. The former is determined from the data in
(a), while the latter contributions were determined from data in Figure 6.4a.

the free energy, one due to LJ attractions, ∆GLJ
LR[ϕ

LJ
R1], and one due to long ranged electrostatic

interactions, ∆Gq
LR[VR1], both of  which are functionals of  their respective LMF potentials.

The long ranged LJ and electrostatic components of  the hard sphere solvation free energies per
unit solute surface area as a function of  solute radius are shown in Figure 6.5b. The electrostatic
component ∆Gq

LR only slightly increases from zero as a function of  solute size over the range of  sizes
examined, in agreement with the fact that long ranged electrostatics play only a small role in the
solvation of  a hydrophobic solute. On the other hand, solvent LJ attractions comprise a significant
portion of  the solvation free energy, and become increasingly negative as the solute size is increased.
In the large solute regime, the introduction of  the field ϕLJ

R (r) moves the system from a state of
interfacial wetting to drying. The appearance of  a dry interface increases the ease with which a hard
sphere is solvated by water, or equivalently, the probability of  finding a cavity the size and shape of
the hard solute, completely consistent with the large negative values of ∆GLJ

LR shown in Figure 6.5b.

6.2.3 Ion Hydration

We conclude this section with the calculation of  the solvation free energy of  a single ion in water.
Traditional approaches to ion solvation, like the highly successful formalism developed by Hummer
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and coworkers [80], involve the simulation of  a single ion in a dielectric solvent. The electrostatics are
treated by Ewald summation in these systems, and therefore require the presence of  a neutralizing
background charge density. In addition, significant finite size effects due to the periodicity of  the
Ewald sum are present [95], as discussed in the preceding chapter, although successful finite-size
corrections to the solvation free energy have been developed [80, 95].

LMF theory provides a useful alternative to periodic lattice summation techniques when studying
ion solvation. Aside from the efficient simulation of  purely short ranged systems afforded by LMF
theory, the conceptual difficulties associated with a non-uniform electrostatic potential that depends
on the size of  the simulation cell can be eliminated. Instead, the LMF potential will display the
asymptotic behavior predicted by classical electrostatics, Q/ϵr for large r, producing a physically
reasonable depiction of  ion hydration and enabling the use of  simple finite size corrections in the
form of  a Born model. We extend LMF theory to ion hydration herein.

As discussed in Appendix A, great care is to be taken when solving the LMF equation for
electrostatics. In particular, if  the proper asymptotic behavior of  the LMF equation is not maintained,
the self-consistent iteration process can diverge. However, this problem is easily overcome by forcing
neutrality at each step of  the iteration process for neutral systems. Analogously, we must ensure that
VR(r) follows the expected behavior at small k for a non-neutral system when describing a single ion
solvated by bulk water. Such a stable iteration scheme is presented in Appendix I, and this method of
self-consistently solving the LMF equation is employed when calculating the ion solvation free
energies.

We consider the calculation of  the solvation free energy of  a charged methane “particle” in SPC
water, as studied by Hummer et al. [80]. In this case, methane is modeled in the united atom (UA)
scheme, such that methane (Me) is represented as a single LJ particle with Me-water interaction
parameters of εMe−O

LJ = 0.893228 kJ/mol and σMe−O
LJ = 3.44778 Å. We consider a cationic state of

this particle, with charge QMe+ = +1. Charging of  an anionic state of  the particle is a more difficult
process due to artifacts of  classical ion-water interaction potentials. In these potentials, the repulsive
ion core only interacts with the LJ potential of  the oxygen site. Therefore, the positively charged
hydrogen site can penetrate well into the ionic core due to a lack of  any repulsive core interactions.
This leads to profound nonlinearities in the charging process for ions, and further work is needed to
address the physical significance, if  any, of  this behavior.

We separate the solvation free energy ∆GMe+ of  the positively charged methane ion following
LMF theory:

∆GMe+ = ∆G0 +∆GR1 +∆GLMF. (6.27)

The last two terms ∆GR1 and ∆GLMF are the free energy of  turning on the renormalized electrostatic
potential and the analytic LMF “correction” to the free energy of  mimic system given by the form of
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Table 6.1: Contributions to the Ion Solvation Free Energy (kJ/mol)
Charge ∆GQ0 ∆GR1 ∆GLMF ∆G Hummer et al. [80]

1 -73 -63 -58 -244 -240

Equation 6.15 appropriate for electrostatic interactions,

∆GLMF = −1

2

∫
drρqR(r) [VR(r)− V(r)] . (6.28)

The free energy ∆GR1 of  turning on the field VR1(r) was obtained using a Gaussian approximation as
discussed above.

The first term in Equation 6.27 is the solvation free energy of  the ion in the SCA system. This can
be divided into a free energy of  inserting an uncharged cavity into the GT variant of  SPC water,
∆Gcav, and a free energy of  turning on the near-field portion of  the ion charge, ∆GQ0 , such that
∆G0 = ∆Gcav +∆GQ0 . The free energy of  inserting the ion core can be readily determined by
Widom particle insertion [116], and here we used the value determined by Hummer and
coworkers [80], ∆Gcav = 10.2 kJ/mol. The free energy of  the near-field charging process was
determined by performing simulations of  charged states Q = 0, 0.25, 0.5, 0.75, and 1.0 and
calculating the free energy as a function of Q using the Bennett acceptance ratio [57].

The solvation free energies of  a methane-like cation in SPC water determined from LMF
theory-based free energy calculations are compared with the results of  Hummer et al. [80] in
Table 6.1. The total solvation free energy ∆G listed there is corrected for finite system size by the
addition of ∆GFS = Q2ξ(1− 1/ϵ)/(2L), where ξ = −2.38 for a cubic simulation cell [80]. LMF
theory captures the thermodynamics of  ionic hydration with reasonable accuracy, and the results
obtained from the above formalism compare well with the solvation free energies obtained in
previous work [80]. It is important to emphasize that the accurate LMF ion hydration free energies
obtained from relatively simple simulations of  purely short ranged systems and the many difficulties
associated with traditional approaches to ion solvation using Ewald summation are avoided. The only
essential correction to the free energy is simply to account for the finite size of  the simulation cell.

6.3 Alchemical Free Energy Calculations

In so-called “computational alchemy,” we are interested in the free energy change upon transforming
one molecule into another, i.e. methane into methanol. This type of  free energy difference is
important in numerous areas, such as protein-ligand binding. In aspects of  computer-aided drug
design, one is interested in designing a new drug molecule that will bind to a specific protein and
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possibly promote or inhibit some aspect of  its function. To achieve this task, we could take on the
computationally intense task of  calculating the protein-ligand binding free energy of  each molecule of
interest, a process akin to calculating solvation free energies. However, it is not the binding free
energies that are of  interest but the differences in binding free energies between molecules, such that
we can rank the candidate molecules in order of  binding strength. Computing such differences can
be accomplished by calculating the free energy change upon transforming one bound molecule into
another, while it is still bound to the protein. Although this may not be simple in practice, it is more
efficient than computing the absolute binding free energy of  each molecule. I will describe how to
compute such alchemical free energy changes using LMF theory below.

6.3.1 Thermodynamic Cycle for Computational Alchemy

We now consider an arbitrary solute in solution, interacting with a solvent. This solvent could be
water, a mixture of  a number of  solvents, a protein, and so forth. Here solvent just refers to the
environment surrounding the solute of  interest. The solvent-solvent interactions can be both
electrostatic and non-electrostatic in nature, and the solvent molecules also interact with the solute
via the potential ψ(r;λ). This solute-solvent potential, fixed at the origin, is coupled to a parameter λ
which controls the alchemical transformation. Note that this can be readily generalized to the case of
a set of  potentials {ψi(r; {λj})} coupled to numerous parameters {λj} that control various aspects
of  the potential. This is what would be needed when fixing a molecule, for example, and
transforming this molecule into another.

When the coupling parameter λ is zero, the solute-solvent interaction is that of  the initial solute of
interest, schematically illustrated in the lower left panel of  Figure 6.6. We are interested in the free
energy change Ω(0→1) upon transforming this solute (λ = 0) to another (λ = 1), as indicated by the
lower path in Figure 6.6. In general, this path may require many non-physical intermediate states,
each requiring the accurate evaluation of  long ranged interactions at every state, and these difficulties
are schematically indicated by the red arrow connecting the lower panels in Figure 6.6. However, we
wish to calculate this free energy difference using short ranged systems only, and to do so we will use
LMF theory by defining an alternative path to calculate Ω(0→1).

This alternative path corresponds to the upper panels in Figure 6.6. In this LMF alchemical
transformation, we begin with a mimic system that has the same structure as that of  the fully
interacting initial state. This LMF system is described by short ranged solvent-solvent interactions
v0(r) and renormalized solute-solvent interactions ψR(r;λ = 0). We can then consider performing
the alchemical transformation in the mimic system, where the renormalized solute potential
ψR(r;λ = 0) is slowly transformed into a different renormalized solute with potential ψR(r;λ = 1).
This process is illustrated by the upper leg of  the thermodynamic cycle in Figure 6.6 and is associated
with the free energy Ω(0→1)

R . As was the case for solvation free energies, this process will in general
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Figure 6.6: Thermodynamic cycle for calculating alchemical free energy changes via LMF theory.
The bottom leg of the cycle corresponds to changing the solute from state λ = 0 to state λ = 1, and
in general can involve a change in the shape of the solute and the nature of the solute-solvent interac-
tions. This transformation occurs in the full system, where both the solute-solvent and solvent-solvent
interactions can be long ranged, and is therefore described by the free energy Ω(0→1). The top leg
of the cycle depicts the analogous transformation being performed in the mimic system, with a short
ranged reference solvent and a renormalized solute at both state λ = 1 and state λ = 0. Performing
the alchemical transformation in the mimic system is characterized by the free energy Ω

(0→1)
R . The

sum of the free energies of the paths depicted by green arrows is a difference of analytic LMF correc-
tions derived for solvation free energies, as described in the text.
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require as many steps as performing the transformation in the full system. However, this process is
computationally more efficient, since we have eliminated much of  the overhead arising from the
evaluation of  long ranged interactions at each step of  the transformation process. Hence, we have
connected the upper panels with a red and green striped arrow.

The free energy contributions associated with the green vertical arrows in Figure 6.6 can be
evaluated analytically using Equation 6.15. Therefore, we find that the free energy of  the alchemical
transformation is given by

βΩ(0→1) = βΩ
(0→1)
R + βΩ

(λ=1)
LMF − βΩ

(λ=0)
LMF

= βΩ
(0→1)
R − β

2

∫
dr [ψR(r;λ = 1)− ψ(r;λ = 1)] [ρR(r;λ = 1) + ρB]

+
β

2

∫
dr [ψR(r;λ = 0)− ψ(r;λ = 0)] [ρR(r;λ = 0) + ρB] . (6.29)

The free energy of  the transformation in the mimic system Ω
(0→1)
R can be obtained using the

techniques described in Section II. A. We can therefore calculate general free energy changes in a
fully interacting, long ranged system from simulations involving short ranged systems alone. Note
that this will require at least two additional simulations (the LMF systems) when LRT approximations
to the density and LMF potentials are not valid. However, all simulations will be much more efficient
as the interactions are short ranged at all steps

6.3.2 The Addition of  Solute-Solvent Attractions

A simple example of  an alchemical transformation is simply adding attractive interactions to a purely
repulsive spherical solute. In this subsection I explore this process for solutes of  various sizes in
water. The solutes are the large apolar spherical solutes of  Chapter 3, and we can write the
solute-water interaction potential with the attractive interactions coupled linearly to the parameter λ,

U (λ)
sw = U0,sw + λU1,sw, (6.30)

where U0,sw and U1,sw are the repulsive and attractive portions of  the solute-water interaction energy,
respectively, such that U (λ)

sw =
∑N

i=1 usw(ri;λ). This type of  solute-solvent potential is included in the
nonelectrostatic portion of  the external field, ϕ(r;λ) = usw(r;λ), because no solute-solvent
electrostatic interactions are present. The renormalized potential acting on site α can then be written
as

ψR,α(r;λ) = ϕα(r;λ) + qαVR(r;λ), (6.31)

where the LMF treatment has only been applied to electrostatic interactions and ϕα is the
nonelectrostatic solute-solvent potential acting on solute site α. If  we separate only the electrostatic
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Figure 6.7: (a) Nonuniform density around solutes with HS radii from RHS = 2 Å to RHS = 14 Å
with (λ = 1) and without (λ = 0) solute-solvent LJ attractions. (b) Free energy change per unit so-
lute surface area upon turning on the attractive portion of the solute-water potential U1,sw calculated
in the full, SPC/E water system, the short ranged GT water system, and from LMF theory.

portion of  the renormalized potential into short and long ranged components for use with LMF
theory, this field can be written as ψR,α(r;λ) = ψ0,α(r;λ) + ψR1,α(r;λ), where the short ranged
portion is

ψ0,α(r;λ) = ϕα(r;λ) + qαV0(r;λ) (6.32)

and the long ranged component is simply given by

ψR1,α(r;λ) = qαVR1(r;λ). (6.33)

For the solute-solvent potentials considered herein, given by Equation 6.30, the local electrostatic
component of  the renormalized solute field is zero, V0(r) = 0, but note that VR1(r) ̸= 0, as this
contains the averaged effects of  the long ranged solvent-solvent electrostatic interactions.

Density distributions of  water around solutes of  varying size are shown in Figure 6.7a in the
presence (λ = 1) and absence (λ = 0) of  attractive interactions. For small solutes, the solvation
structure is determined entirely by the need for water to maintain its hydrogen bond network around
the solute. Therefore, for RHS less than roughly 5 Å, attractive interactions have a negligible affect on
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Figure 6.8: Probability distributions of the potential energy due to the slowly-varying portion of the
electrostatic LMF VR1 for solutes with effective hard sphere radii of (a) RHS = 4 Å, (b) RHS = 10 Å,
and (c) RHS = 14 Å. Symbols are data obtained from simulation and lines are Gaussian distributions
with the same mean and variance of the corresponding computed distributions.

the solvation structure.
The hydrogen bond network of  water cannot be maintained around large solutes, and a soft,

liquid-vapor like interface is nucleated in the vicinity of  the solute surface, resulting in the phenomena
of  drying in the interfacial region, which becomes more pronounced as the solute size is increased.
This soft interface is highly responsive to perturbations, and attractive interactions significantly alter
the solvation structure, effectively “pulling” water molecules toward the solute surface, increasing the
magnitude of  the first peak in ρ(r) with respect to that observed in the absence of  solute-solvent
attractions.

We again determined the free energy of  turning on the slowly varying portion of  the LMF
potential, ∆GR1,λ, using the Gaussian approximation of  Equation 6.24. To verify the accuracy of  this
approximation, I have calculated the probability distributions P (λ)

0 (ΨR1) and P (λ)
R (ΨR1), where

ΨR1 =
∑N

i=1 ψR1(ri). These distributions are shown in Figure 6.8 for several solute sizes and for
both values of λ in the corresponding SCA and mimic systems. The symbols in Figure 6.8 are data
calculated from simulation, while solid lines are Gaussian distributions with the same mean and
variance as the calculated distribution. All distributions for all solute sizes studied are found to follow
Gaussian statistics, verifying the use of  Equation 6.24 to estimate the free energy ∆GR1,λ.

The free energy change along the transformation λ = 0 → λ = 1 can be obtained by
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thermodynamic integration,

∆G0→1 =

∫ 1

0

dλ

⟨
∂H(λ)

∂λ

⟩
λ

=

∫ 1

0

dλ ⟨U1,sw⟩λ , (6.34)

where H(λ) is the λ-dependent Hamiltonian of  the system and ⟨· · · ⟩λ indicates an ensemble average
over configurations of  the system interacting with coupling parameter λ. The free energy differences
calculated using the full SPC/E model are compared with those calculated using the short ranged GT
water model and with those computed from LMF theory in Figure 6.7b for a range of  solute radii.
The LMF route to calculating free energy differences is found to reproduce the results of  the full
system almost exactly for all solute sizes examined. Therefore, the results presented for this simple
test case effectively illustrate that the LMF theoretic framework can be applied to alchemical
transformations with quantitative accuracy.

6.4 Density Fluctuations and Hard Sphere Solvation

The preceding sections describe LMF-based methods for computing free energy changes of  a solute
in solution as it is changed from one state to another (a point solute to the full solute in the case of
solvation free energies). In general, thermodynamics is not limited to the description of  solvation
processes, and a free energy can be computed along some relevant order parameter or reaction
coordinate describing any process of  interest. For example, the association of  two model methane
molecules in water was studied by computing the free energy as a function of  methane-methane
distance in Chapter 3. However, to compute such free energy profiles, one often needs to employ
advanced non-Boltzmann sampling techniques [31].

One type of  non-Boltzmann sampling employed throughout this thesis is umbrella sampling [118],
in which many simulations of  a system are performed, each with a unique “umbrella” potential that
biases the system toward a particular value of  the reaction coordinate. The results of  this set of
simulations can then be stitched together through a number of  means, one of  which is the multi-state
Bennett acceptance ratio [68] (MBAR) used many times throughout this work. Therefore, in order to
use the LMF framework to calculate general free energy landscapes as a function of  an order
parameter of  interest, we need to combine LMF theory with such non-Boltzmann sampling
techniques.

We have developed such a formalism, and the technical details are described in Appendix J. We
combine LMF theory, umbrella sampling, and MBAR to calculate ensemble averages in a full system
from sampling performed in a mimic or SCA system. Umbrella sampling is performed with an
appropriate biasing potential for each window and an accompanying window-specific LMF potential.
This ensures an accurate representation of  the full system structure in each window. Free energy
differences between these windows, and the associated free energy landscape, can then be determined
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for the mimic system using MBAR. Finally, the analytic LMF contribution to the free energy given by
Equation 6.15 can be used to reweight mimic system ensemble averages in order to obtain the
corresponding averages in the full system. An analogous procedure can be performed for the SCA
system when LRT is accurate, however the reweighting must also account for the free energy
differences between the SCA and mimic systems.

As a demonstration of  these theoretical developments, we study density fluctuations in bulk water.
Specifically, we seek to calculate the probability of  observing N water molecules within a spherical
volume v. This probability Pv(N) is intimately related to the free energy of  solvation ∆GHS of  a hard
sphere of  the same volume through the potential distribution theorem,

e−β∆GHS =
⟨
e−βUHS

⟩
M
= ⟨δNv ,0⟩M = Pv(0), (6.35)

where the ensemble averages are performed over the bulk mobile fluid ensemble (M) in the absence
of  a hard sphere, UHS =

∑M
i=1 uHS(ri) = δN,0 is the total solute-solvent interaction energy, and δN,N ′

is the Kronecker delta function. Therefore, β∆GHS = − lnPv(0), where Pv(0) is the probability of
observing a cavity the same size and shape of  the solute volume v. It was shown earlier in this
chapter that one can use LMF theory to determine ∆GHS, and therefore − lnPv(0), from a purely
short ranged system with quantitative accuracy for both small and large solute volumes. In this
section, we demonstrate that the full distribution Pv(N) can also be obtained from short ranged
systems with high accuracy by combining LMF theory and non-Boltzmann sampling techniques.

For relatively small probe volumes, the distributions Pv(N) can be calculated using the Widom
particle insertion method [31]. However, large volume density fluctuations are rare events not
accurately sampled by conventional simulations, and some type of  biased, non-Boltzmann sampling
technique is needed to calculate Pv(N) accurately. In this case, we use umbrella sampling techniques
to bias the simulation. At first glance, one would like a biasing potential in terms of  the variable of
interest, N . However, N is a discrete variable, and this presents issues with MD simulations, because
the potentials and forces will not be continuous (although this is not a problem in Monte Carlo
simulations). Instead, the INDUS method allows N to be coarse-grained by smoothing N with a
truncated and shifted Gaussian distribution, resulting in the continuous coarse-grained variable
Ñ [74]. We can then bias the simulation toward desired values of Ñ , which, with correctly tuned
parameters, will closely follow N . After performing a set of nw simulations that adequately sample N
and Ñ , with sufficient overlap of  the Pv(N, Ñ) distributions between neighboring windows, we can
reconstruct the desired Pv(N) using MBAR [68]. In all cases, a simple harmonic potential was used
to bias the system toward the desired value of Ñ ,

Vk(Ñ) =
κ

2

(
Ñ − ηk

)2
, (6.36)
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Figure 6.9: Probability distribution Pv(N) of finding N water molecules in a spherical observation
volume v with a radius of 6 Å determined in GT and GTRC water. Also included are the results ob-
tained from a combination of LRT and LMF theory, and described in Section J.3.

where ηk is the desired value of Ñ in window k, and the force constant κ was chosen independently
for each window to yield sufficient overlap between neighboring windows.

In order to maintain a constant bulk density far from the probe volume across all biased
ensembles, we perform simulations in the isothermal-isobaric (NPT) ensemble, and therefore must
account for the biasing potential in the calculation of  the virial pressure. The contribution to the
pressure from the biasing potential is simply,

P INDUS ≡ −∂Vk
∂V

=
1

3V

M∑
i=1

ri · fINDUS
i , (6.37)

where M is the number of  particles interacting with the biasing potential, ri is the position of  particle
i, and fINDUS

i is the force on particle i due to the biasing potential [74].
For small volumes, below the crossover size, long ranged interactions have a negligible influence

on the solvation behavior. Therefore, density fluctuations in the bulk fluid are determined by local,
hydrogen bonding interactions on such small length scale, and these fluctuations are not altered upon
the inclusion of  an LMF in the short ranged reference system. In contrast, in the large scale regime,
Pv(N) displays non-Gaussian tails at low N in GT water, as shown in Figure 6.9. The appearance of
such fat tails in Pv(N) are a manifestation of  the nucleation of  a nanoscale liquid-vapor interface at
the surface of  a large cavity, and are consistent with the appearance of  interfacial drying. Indeed,
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removal of  the unbalanced attractive LJ forces in GTRC water eliminates drying, and therefore the
Pv(N) of  GTRC lacks such fat tails at low N , as can be expected from the results presented in
Chapter 3. In addition, the GTRC Pv(N) is nearly Gaussian for all N , similar to what is observed in
a hard sphere fluid [128].

Using LRT, we determine the densities and LMF fields in each biased ensemble necessary for
performing the reweighting described in Section J.3. Upon doing so, averages obtained from
configurations obtained in the GTRC system are appropriately reweighted, yielding a Pv(N)
distribution consistent with GT water, as shown by the red stars in Figure 6.9. By including the
averaged effects of  the unbalanced LJ forces in each biased ensemble, we can capture the non-trivial fat
tails observed at low N with high accuracy, as shown in Figure 6.9.

6.5 Conclusions

In this chapter we have developed a LMF theory-based framework for performing the major types of
free energy calculations. The accuracy of  this theoretical framework was demonstrated through the
study of  hard sphere solvation in water and LJ fluids, and ion hydration. Such systems represent the
most challenging test cases for LMF theory, where unbalanced interfacial forces arising from long
ranged interactions are quite important for structure and thermodynamics, leading to interfacial
drying and the length scale transition of  solvophobic solvation. LMF theory provides an
exceptionally accurate description of  these systems, and we expect that the framework developed
herein will be readily applicable to more complex systems.

The most natural extension of  our theoretical framework is to the solvation of  molecularly detailed
solutes consisting of  multiple atomic sites. In general, a fixed solute of  this type will generate a
nonuniform LMF VR(r) with no symmetries. One may exploit the ability of  the LMF equation to be
rewritten in the form of  a Poisson’s equation involving the Gaussian smoothed total charge density of
the system [1], ∇2VR1(r) = −ρqσtot(r)/ϵ, to solve for VR1(r) with a numerical Poisson Solver [129], but
evaluation of  a three-dimensional potential may still be computationally difficult. Another promising
avenue to use LMF theory for molecular solutes is to extend the superposition-like approximation
made by Denesyuk and Weeks (DW) [44]. Within this approximation, the nonuniform LMF potential
is approximated by the sum of  the spherically symmetric potentials centered on the atomic sites of
the solute molecule,

VR(r) ≈
Nα∑
α=1

VR,α(|r− rα|), (6.38)

where there are Nα charged sites in the solute, each of  which are indexed by α. DW have successfully
applied such approximations to the description of  bulk electrolytes and the collapse of  model
polypeptides in electrolyte solutions [44, 130]. Although DW represented the solvent as a uniform
continuum with dielectric constant ϵ and used further Debye-Hückel-based approximations to solve
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the LMF equation, we expect that expressions like Equation 6.38 will still be accurate in systems
where the solvent is modeled explicitly and the LMF equation is solved in more detail.

The LMF framework for free energy calculations should be of  significant importance to the study
of  biomolecular and materials research. The study of  the large-scale systems involved in these areas
often make a characterization of  the free energy landscapes necessary to understand the relevant
processes of  interest prohibitively expensive. LMF theory reduces such computational burdens,
allowing for the in depth study of  large-scale systems involving macromolecules like proteins or
molecular assemblies like membranes and micelles. Indeed, the extension of  LMF theory to these
important areas is currently underway.
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Contrary to the outstanding work of  art,
outstanding theory is susceptible to improvements.

Karl Popper

7
Conclusions and Future Work

Throughout this dissertation, we have utilized LMF theory and its underlying concepts to examine
the thermodynamic consequences of  nanoscale structural details. We first focused on several

anomalous thermodynamic properties of  bulk water, and examined the structural origins of  such
anomalies using LMF-based truncations of  the SPC/E water model. Long ranged electrostatic
interactions play a minimal role in the studied anomalies, as may be expected from the accuracy of  the
force cancellation picture for such slowly-varying interactions. This is reflective of  a hierarchical
ordering of  importance of  the (i) hydrogen bond network, (ii) longer ranged LJ attractions, and (iii)
long ranged multipolar interactions. The anomalous structural and thermodynamic properties of
water arise from a competition of  the local repulsive and attractive forces leading to the hydrogen
bond network and the cohesive energy provided by long ranged attractive interactions.

In addition, LMF-based truncated models were employed to illustrate the role of  unbalancing
potentials in hydrophobic effects, and to facilitate a comparsion between solvophobic solvation in
water and simple liquids. In particular, the use of  such truncated models in conjunction with LMF
theory allowed us to clearly illustrate the role of  the hydrogen bond network in determining the solute
size at which a crossover from small to large length-scale solvation occurs in water. Such strong local
interactions lead to significantly different physics underlying the crossover in water than in a simple
LJ fluid.

Local molecular field theory ideas were then employed to study ion hydration, and subtleties
surrounding the calculation of  electrostatic potentials arising in dielectric continuum theories were
explored. It was also illustrated that any non-Gaussian behavior in the response of  water to the
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presence of  a charged hard sphere arises from short ranged, near-field electrostatics. The far-field
components of  the electrostatic response, on the other hand, are relatively insensitive to the
molecular details of  the solvent, and the solvent can be treated as a continuum on such
long-wavelengths. This was further exemplified by probing the dielectric response of  molecular
systems to Gaussian test charges. Such Gaussian distributions of  charge are the appropriate
generalization of  the concept of  a classical test charge to probe the dielectric response of  molecularly
detailed systems as studied by simulation.

A highly accurate LMF-theoretic framework was then developed for free energy calculations, in
which long ranged components of  the free energy are computed analytically while the remaining
steps are performed using computationally efficient simulations of  purely short ranged models. This
approach was then applied to several challenging problems, in which unbalancing forces play a
significant role in determining the structure and thermodynamics of  the system. The calculation of
thermodynamic properties from LMF theory is directly applicable to most methods of  free energy
calculation, and should therefore find widespread use. Further development of  this framework for
more complex systems is an active area of  research.

Of  particular interest for future research is to extend the use of  truncated models to the study the
behavior of  “cold” water. It has been proposed that water has a liquid-liquid critical (LLCP) point
located at low temperature and high pressure [131]. The LLCP hypothesis has been used to provide a
theoretical explanation for the many anomalous properties of  water based on the existence of  two
distinct liquid states. However, this LLCP has eluded experimental detection because it is located in
the so-called “No-Man’s Land” of  the water phase diagram, so named because it is below the
homogenous nucleation temperature of  ice and therefore one cannot equilibrate a metastable liquid
phase. The existence of  such a critical point, and the liquid-liquid phase transition (LLPT) line it
implies, has been a subject of  great debate, with mounting evidence both for [132, 133, 134] and
against [135, 136, 137]. In particular, Limmer and Chandler have argued persuasively that there are
not two distinct liquid phases at low temperatures in most realistic water models. Instead, they
propose that the previously observed high density liquid (HDL) and low density liquid (LDL) phases
were a misinterpretation of  nonequilibrium phenomena associated with coarsening dynamics of  the
metastable liquid state during crystallization [136].

Examination of  the low temperature behavior of  the GTRC model in particular could shed some
light on these issues. This minimal representation of  the hydrogen bond network of  water yields a
low density liquid (not the LDL described above) that lacks the cohesive energy necessary to
introduce a fifth nearest neighbor into the hydration shell of  a water molecule. As such, we expect
that this model cannot have a HDL phase. Therefore, if  it displays the characteristic increase in
response functions as the temperature is lowered, this cannot be rationalized by the existence of  two
phases. In addition, the density of  GTRC is less than that of  ice at ambient conditions, and studying
the melting transition of  this model should also prove quite instructive.

Another area of  future research that is currently underway is to utilize truncated models in
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conjunction with LMF theory to study ion specific effects at the liquid-vapor interface. Contrary to
classical dielectric continuum theory predictions, which state that ions should be repelled from a
liquid-vapor interface, both experiments and simulations have observed that ions can adsorb to such
interfaces. One particularly simple and heavily studied ion is Iodide, I−, an anion of  relatively low
charge density. Recent results have shown, quite surprisingly, that the energetics of  ion adsorption are
dominated by local ion-water interactions, such that I− perturbs only water molecules in the first
hydration shell [138, 139]. However, the presence of  I− at the water-vapor interface leads to an
entropic penalty through the suppression of  interfacial density fluctuations [138, 139]. Such capillary
waves are typically viewed as a long-wavelength phenomenon, and an accurate description of  these
interface fluctuations can be provided by field theories neglecting molecular-scale details. This
energy-entropy balance may seem contradictory, because the energetic contribution to the free energy
is dominated by local interactions while the entropic component arises from non-local effects. As
such, attempts have been made to disentangle the effects of  interfacial fluctuations on the free energy
of  ion adsorption [140].

Unlike previous studies, the use of  LMF-based truncated models allows for the direct
decomposition of  effects arising from local and non-local interactions. A strong coupling system
consisting of  GT water and a short ranged I−, for example, will contain only short ranged
electrostatic interactions. The surface tension of  GT water is slightly less than that of  SPC/E, and
will therefore have a slightly larger amplitude of  capillary wave fluctuations. This system provides a
useful test of  the hypothesis that ion adsorption is dominated by local electrostatics. This is indeed
the case, and free energies as a function of  distance perpendicular to the average position of  the
liquid-vapor interface show a minimum at nearly the same location in both SPC/E water and its GT
variant, as shown in Figure 7.1 1.

The suppression of  capillary waves can also be studied using LMF theory and truncated models.
We can utilize the useful “feature” that mean field theory cannot capture long-wavelength capillary
waves [8] to simulate a liquid vapor interface without these fluctuations. In particular, we can use the
GTRC model with LMF theory for LJ attractions to capture the average structure of  the liquid-vapor
interface. However, this interface lacks long-wavelength density fluctuations, and simulation results
indicate that interfacial height fluctuations are reduced by roughly 70 % in the LJ-LMF system, such
that only local distortions of  the interface can occur. Surprisingly, a distinct minimum in the potential
of  mean force is present even in this system, as shown in Figure 7.1. Although decomposition of  the
free energy into its energetic and entropic components is necessary to determine the relative balance
of  these contributions, these results at least indicate that ion adsorption suppresses local fluctuations
of  the interface, and not the traditional long-wavelength capillary waves.

A major theoretical development that remains for LMF theory is its extension to dynamics of

1More details regarding the liquid-vapor interfaces of  truncated models are given in Appendix K
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Figure 7.1: Change in free energy ∆F (z) for moving a fractionally charged iodide as a function of
distance z from the mean liquid-vapor interface located at z = 0 with full electrostatics (SPC/E), in
the GT reference system, and in GTRC water in the presence of ϕLJ

R (z) as described in the text. The
I− ion is modeled as a LJ particle with fractional charge QI = −0.8 e0. The oxygen-I− LJ interaction
parameters are εLJ = 0.5215 kJ/mol and σLJ = 4.14525 Å [138].

molecular systems, both in and out of  equilibrium. We can illustrate the successes and failures of
LMF theory in the description of  dynamical properties of  molecular systems through the examination
of  a one-component LJ fluid, its WCA reference system, and the corresponding LMF system at a
state point of ρσ3

LJ = 0.85 and T ∗ = 0.65 [141]. The structure of  the LJ fluid, quantified by the pair
distribution function g(r), is accurately captured by the LMF system, while small deviations are
found for the WCA reference consistent with previous findings [6]. We quantify the dynamic
properties of  the systems through the velocity autocorrelation function Cv(t),

Cv(t) =
⟨v(t) · v(0)⟩
⟨v2(0)⟩

, (7.1)

where v(t) is the three-dimensional velocity vector of  a particle at time t, and the mean-squared
displacement, MSD(t).

We can begin to see where LMF theory needs improvement by dividing space-time into three
distinct regimes. Following Hansen and McDonald [26], we set the relevant length- and time-scales to
be the mean free path lC and the mean collision time τC . The fastest time-scale, associated with the
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Figure 7.2: (a) Pair distribution functions obtained for a LJ fluid, its WCA reference, and the corre-
sponding LMF system at the state point ρσ3LJ = 0.85 and T ∗ = 0.65. (b) Velocity autocorrelation
functions and (c) mean squared displacments for the three systems. Note the log-log scale in (c).
Times are obtained using the appropriate units for argon.

shortest lengths, is the free-particle regime, wherein klC >> 1 and ωτC >> 1 (ω indicates frequency,
the Fourier-space analog of  time). In this regime, particles move almost independently of  one
another, and LMF theory, or even the strong coupling approximation, will trivially capture the
dynamics occurring on such short timescales, as evidenced by Figure 7.2.

An intermediate regime also exists, characterized by klC ≈ 1 and ωτC ≈ 1, termed the kinetic
regime [26]. In this regime, the molecular structure of  the fluid is of  substantial importance. For argon,
τC is on the order of  0.1 ps [26], and we expect that klC ≈ kρ−1/3 ≤ 21/6σLJk to a good
approximation at densities near the triple point. Therefore the structure and dynamics on this
space-timescale will also be captured by LMF theory, but may not be captured in the corresponding
SCA system which lacks the correct equilibrium structure. Indeed, this is the case, as Cv(t) and
MSD(t) in Figure 7.2 are both accurately described by the LMF system for t < 0.5 ps, while the
WCA reference system fails to reproduce the depth of  the minimum in Cv(t) near 0.4 ps and the
MSD of  this system increases more rapidly than the full LJ system.

The third and final regime under consideration is the hydrodynamic regime associated with
long-wavelength, long-time fluctuations [26], klC << 1 and ωτC << 1. Due to the mean field
nature of  the LMF approach, long-wavelength fluctuations are neglected. While this is not
problematic when the structure and thermodynamics of  systems in equilibrium are concerned, such
fluctuations are important when the hydrodynamic properties of  a system are under consideration.
Therefore, we might expect that LMF theory cannot capture the long-time behavior of  the dynamics
in its current formulation. Indeed, the data presented in Figure 7.2 indicate that LMF theory does not

147



reproduce the collective effects leading to the long-time dynamics of  the full LJ fluid. However,
because hydrodynamics does not depend sensitively on the microscopic details of  a fluid, general,
time-dependent corrections to LMF theory from fluctuating hydrodynamic fields should be possible.
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A
LMF Theory in Practice

This Appendix describes how LMF theory is implemented in practice for a system examined in this
thesis. Although it is more than a “toy” model, I will demonstrate the use of  LMF theory on the case
of  a large repulsive spherical solute of  the type examined in Chapter 3 with an effective hard sphere
radius of RHS ≈ 20 Å in 6022 SPC/E water molecules. Although this system is quite large, similar
results hold for smaller solutes that are still in the solute size regime in which the H-bond network
cannot be maintained around the solute, roughly RHS ≥ 6 Å. However, the differences between
truncated and full water models become more pronounced as the solute size is increased.

The potential energy of  a uniform, bulk system of N molecules of  SPC/E water is given by

U =
1

2

N∑
i=1

N∑′

j=1

u (rij) +
1

2

3N∑
i=1

3N∑′

j=1

qiqj
ϵ
v (rij) , (A.1)

where the prime over the second sum indicates that terms when sites i and j are on the same
molecule are omitted and rij = |rj − ri| is the distance between sites i and j. The first term
corresponds to the LJ interactions in the system, with one LJ site per molecule. The LJ potential is
given by

u(r) = 4εLJ

[(σLJ

r

)12
−
(σLJ

r

)6]
, (A.2)

and the energy and length-scale parameters for water are εLJ = 0.65 kJ/mol and σLJ = 3.166 Å,
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respectively. The second term corresponds to the evaluation of  electrostatic interactions, and, as
there are three charges per SPC/E water molecule, the summations are over the 3N charged sites in
the system. The electrostatic interaction is the Coulomb potential,

qiqj
ϵ
v(r) =

qiqj
ϵr

, (A.3)

where qi is the partial charge of  site i and ϵ is the dielectric constant of  the media (taken to be 1 in the
case of  vacuum).

Here, I will only focus on separating v(r) = 1/r, and not the LJ potential (solving the LMF
equation is similar, and actually easier with the LJ potential). In this case, the 1/r portion of  the
Coulomb potential is separated into a rapidly-varying short ranged portion and a slowly-varying long
ranged portion as

v(r) = v0(r) + v1(r) =
erfc(r/σ)

r
+

erf(r/σ)
r

, (A.4)

where the separation length scale σ has been chosen (rather conservatively) to be equal to 4.5 Å (I say
conservatively because even a value of σ = 3.0 Å will capture the bulk structure of  SPC/E water at a
fixed volume). Using only v0(r) in place of 1/r in the Coulomb potential leads to the
Gaussian-Truncated (GT) model of  water, which will be used to illustrate the process of  solving the
LMF equation. Note that the potential energy of  a uniform, bulk system of N molecules of  GT
water is then given by

UGT =
1

2

N∑
i=1

N∑′

j=1

u (rij) +
1

2

3N∑
i=1

3N∑′

j=1

qiqj
ϵ
v0 (rij) , (A.5)

in analogy with that of  the SPC/E model described above.

A.1 Obtaining a Self-Consistent Solution of  the LMF Equation

The first step of  solving the LMF equation is to perform a simulation of  the short ranged system to
provide an initial charge density to input into the LMF equation. Note that if  one can provide a good
“guess” to the charge density as input to the LMF equation, this can be input to the LMF equation
first and simulate with an initial field (see Reference [110] for further details and an example).

We will examine four properties of  the system in order to compare the full SPC/E, GT, and LMF
systems: (i) the microscopic charge density in a configuration R̄,

ρq(r;R) ≡
∑
i

qiδ(r− ri(R)),
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Figure A.1: (a) Charge densities, (b) Gaussian-smoothed charge densities, (c) electrostatic poten-
tials, and (d) probability distributions of θOH for SPC/E and GT water models around a purely repul-
sive spherical solute of radius RHS ≈ 20 Å.

the ensemble average of  which is ρq(r) = ⟨ρq(r; R̄)⟩, (ii) the Gaussian-smoothed charge density,

ρqσ(r) =
1

π3/2σ3

∫
dr′ρq(r′) exp

[
−

(
|r− r′|2

σ2

)]
,

which, in a spherically symmetric system is given by

ρqσ(r) =
1

rσ
√
π

∫ ∞

0

dr′r′ρq(r′)

[
exp

(
−|r− r′|2

σ2

)
− exp

(
−|r+ r′|2

σ2

)]
,

(iii) the electrostatic (or polarization) potential

Φ(r) =
1

4πϵ0

∫
dr′

ρq(r′)

|r− r′|
= − 1

ϵ0

∫ r

0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r′′),

and (iv) the probability distribution of  the angle formed by the O-H bond vector of  a water molecule
and the vector connecting the water oxygen site and the solute, P (θOH), which was calculated for
water molecules within 1 Å of  the solute surface.
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The above-mentioned quantities are shown for the SPC/E and GT water models in Figure A.1.
Although only slight differences are observed between the charge densities of  the two systems, like
the larger first peak in that for the GT model, large differences are found for the remaining quantities.
This illustrates that while the truncated and full systems have only small differences in their charge
densities (and oxygen densities, not shown), there are large effects on other electrostatic and
orientational properties of  water. The origin of  these effects are discussed in Chapter 3.

A.2 Solving the LMF equation at each iteration

A.2.1 One-dimensional LMF equation in a spherically symmetric system

The next step is to evaluate the LMF equation in a single iteration. In spherically symmetric charged
systems, the LMF equation we wish to solve is given by

VR(r) = V0(r) +
1

ϵ

∫
dr′ρq (r′; [VR]) v1 (|r− r′|) + C, (A.6)

where we have separated the electrostatic LMF into short ranged and long ranged portions,
VR(r) = V0(r) + VR1(r). In order to convert this to a numerically integrable one-dimensional
equation, we seek a Green’s function, G(r; r′), that satisfies the relation

VR(r) = V0(r) +
1

ϵ

∫
dr′ρq (r′; [VR])G(r; r

′) + C. (A.7)

Physically, G(r; r′) can be considered the potential at position r due to a unit charge smoothed into
spherical shell at position r′, which is then Gaussian-smoothed. We can then rewrite Equation A.7 in
the following manner,

VR(r) = V0(r) +
1

ϵ

∫
dr′ρq (r′; [VR])

∫
dr′′

δ (r′ − r′′)

4πr′2
v1 (r− r′′) + C, (A.8)

making it evident that the function G(r; r′) is given by

G(r; r′) =

∫ 2π

0

dϕ

∫ 1

−1

d (cosθ)

∫ ∞

0

dr′′r′′2
δ (r′ − r′′)

4πr′2

erf
(

|r−r′′|
σ

)
|r− r′′|

=
1

2

∫ 1

−1

d (cosθ)
erf
(

|r−r′|
σ

)
|r− r′|

. (A.9)
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In order to evaluate this integral, we make a transformation to bipolar coordinates,

G(r; r′) =
1

2rr′

∫ |r+r′|

|r−r′|
dy erf (y/σ) (A.10)

Now, upon making the substitutions y/σ = s and dy = σds, the integral can be easily evaluated as

G(r; r′) =
σ

2rr′

∫ |r+r′|/σ

|r−r′|/σ
ds erf(s)

=
σ

2rr′

(
s erf(s) +

1√
π
e−s2

) ∣∣∣|r+r′|/σ

|r−r′|/σ

=
1

2rr′

[
|r + r′| erf

(
|r + r′|
σ

)
+

σ√
π
e
−
(
|r+r′|

σ

)2

− |r − r′| erf
(
|r − r′|
σ

)
− σ√

π
e
−
(
|r−r′|

σ

)2]
. (A.11)

Through the use of  the Green’s function G(r; r′) given in Equation A.11, VR can be readily obtained
through numerical integration of  Equation A.7.

A.2.2 k-space stable form of  the LMF equation

When dealing with charged systems, one typically must take care that the proper asymptotic sum
rules are satisfied, and LMF theory is no different. Consider the Fourier transform of  the long ranged
slowly-varying portion of  the LMF equation for electrostatics,

V̂R1(k) =
1

ϵ
ρ̂q(k)e

(
− k2σ2

4

)
4π

k2
=

1

ϵ
ρ̂qσ(k)

4π

k2
, (A.12)

where we have defined the three-dimensional Fourier transform and inverse Fourier transform of  a
function f as

f̂(k) =
∫
dre−ik·rf(r)

and
f(r) =

1

(2π)3

∫
dkeik·rf̂(k),
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respectively. From the Stillinger-Lovett sum rules [26, 107, 108, 109], we expect that the charge
density will satisfy

ρ̂q(k) ∼ 0 + αk2 +O(k4), (A.13)

at small k for the “correct” VR1. However, for incorrect VR1, i.e. before self-consistency of  the LMF
equation is obtained as in the case of  GT water, the charge density may asymptotically behave as

ρ̂q(k) ∼ C + αk2 +O(k4) (A.14)

for small k, where C is a constant. If C ̸= 0, then the iteration of  the LMF equation will diverge in
k-space, and therefore we need some type of  stable iteration scheme.

A scheme for iterating the LMF equation has been developed 1, and the k-space stable solution of
the LMF equation is

VR1(r) =
1

ϵ

∫
dr′
[
ρqσ(r′)− ρqσl(r′)

] 1

|r− r′|
+

1

l3π3/2

∫
dr′VR1(r′)e

−|r−r′|2
l2 , (A.15)

where we have defined the smoothed charge density

ρqσl(r) =
∫
dr′ρq(r′)ρG(|r− r′| ;

√
σ2 + l2), (A.16)

such that
ρG(r;α) =

1

π3/2α3
e−

|r|2

α2 .

The length l is typically chosen on the order of σ.
For a spherically symmetric system, the one-dimensional k-space stable LMF equation is

VR1(r) =
1

ϵ

∫
d′r′ρqR(r

′)G(r; r′;σ)

− 1

ϵ

∫
d′r′ρqR(r

′)G(r; r′;
√
σ2 + l2)

+ I(r) + C, (A.17)

1The original k-space stable form of  the LMF equation developed by Kirill Katsov took on a different form [142, 143].
This current form is due to John Weeks.
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Figure A.2: Diagrams depicting (a) traditional iteration using simulation to solve for the density at
each step and (b) linear response theory based method to obtain the density at each iteration.

where the Green’s function is given by

G(r; r′; γ) =
1

2rr′

[
|r + r′| erf

(
|r + r′|
γ

)
+

γ√
π
e
−
(
|r+r′|

γ

)2

− |r − r′| erf
(
|r − r′|
γ

)
− γ√

π
e
−
(
|r−r′|

γ

)2]
, (A.18)

and I(r) is the integral

I(r) =
1

πlr

∫ ∞

0

dr′r′VR1(r
′)

[
e
−
(
|r−r′|

l

)2

− e
−
(
|r+r′|

l

)2]
.

A.3 Iterating the LMF equation with linear response theory

Finally, an iterative solution of  the LMF equation needs to be obtained. Traditionally, this has been
done by obtaining a new density at each step through simulation (Figure A.2a). Recent work has led
to the development of  a linear response theory based framework to iterate the equation
(Figure A.2b), and this is described below.
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Figure A.3: (a) Charge densities and (b) Gaussian-smoothed charge densities for SPC/E and GT
water models, as well as that obtained from iterating the LMF equation via linear response theory
(LRT), Equation A.22. (c) The electrostatic LMF obtained from linear response theory iteration of
the LMF equation.

A.3.1 Linear response theory for the density

In this section, I will describe how to solve the self-consistent LMF equation using linear response
theory (LRT). Our goal will be to obtain a charge density response to a new field without performing
another simulation with that field. First, we define the total potential energy due to VR1(r) in a
configuration R̄ as

ΦR1 (R̄) ≡
N∑
i=1

qiVR1 (ri) =
∫
drρq (r; R̄)VR1(r), (A.20)

for a system of N charges. Using density response theory, the new charge density is given by

⟨ρq (r; R̄)⟩VR1
=

⟨ρq (r; R̄) exp (−βΦR1 (R̄))⟩V0

⟨exp (−βΦR1 (R̄))⟩V0

, (A.21)

where ⟨· · · ⟩V0
indicates an ensemble average over the configurations of  the strong-coupling system

or the system in the presence of  an intermediate field. Such an average over exponentials is usually
difficult to accurately evaluate numerically, and therefore using LRT allows one to determine the new
density without performing such averages. The LRT result for the new charge density is given by

⟨ρq (r; R̄)⟩VR1
≃ ⟨ρq (r; R̄)⟩V0

− β ⟨δρq (r; R̄) δΦR1 (R̄)⟩V0
, (A.22)
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Figure A.4: (a) Charge densities, (b) Gaussian-smoothed charge densities, (c) electrostatic poten-
tials, and (d) probability distributions of θOH for SPC/E and GT water models, as well as GT water in
the presence of the electrostatic LMF around a purely repulsive spherical solute of radius RHS ≈ 20 Å.

where
δρq (r; R̄) ≡ ρq (r; R̄)− ⟨ρq (r; R̄)⟩V0

and
δΦR1 (R̄) ≡ ΦR1 (R̄)− ⟨ΦR1 (R̄)⟩V0

.

Now, instead of  iterating the LMF equation to self-consistency using simulations, we can iterate using
Equation A.22 in conjunction with the LMF Equation until convergence of  a new LMF is obtained.
This technique, schematically depicted in Figure A.2b, is far more efficient than iterating the LMF
equation using simulations, and was used to perform the LMF simulations discussed in this work.

The charge density obtained from iteration of  the LMF equation via linear response theory (LRT)
is compared to that of  the SPC/E and GT water models in Figure A.3a. Although ρq(r) obtained
from LRT is much noisier than those of  the SPC/E and GT models, near quantitative agreement
with the SPC/E model is observed, especially in the height of  the first peak. Upon
Gaussian-smoothing, ρqσ(r) from LRT is found to be in much better agreement with SPC/E than
that of  the GT model in the absence of  the renormalized field. Finally, the LMF VR(r) obtained from
iteration via LRT (scheme shown in Figure A.2b) is shown in Figure A.3c. This field is used to obtain
the results shown for the LMF system in the next section.
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A.3.2 Comparison with the full system

Finally, we perform a simulation of  the truncated system, GT water, in the presence of  the converged
LMF in order to obtain equilibrium properties of  the system. The charge densities,
Gaussian-smoothed charge densities, electrostatic potentials, and probability distributions of θOH are
shown in Figure A.4 for SPC/E and GT water, as well as GT water in the presence of  the electrostatic
LMF depicted in Figure A.3c. We find that the inclusion of  the renormalized potential VR(r) leads to
properties in quantitative agreement with the full SPC/E system. The quantities obtained from the
LMF system were averaged over 20,000 configurations equally spaced over a 1 ns simulation.

158



B
Derivation of  the Bethe Potential

Consider a neutral system with zero dipole and traceless quadrupole moments, but nonzero second
moment tensor, or equivalently, nonzero primitive quadrupole tensor. We seek to evaluate the
average potential over the cell, defined as

⟨
ϕV

⟩
=

⟨
1

V

∫
cell
ϕ(r;R)

⟩
=
⟨

lim
k→0

ϕ̂(k;R)
⟩
, (B.1)

where ϕ̂(k;R) indicates the Fourier transform of ϕ(r;R). Using Poisson’s equation, the average
potential over the volume of  the cell can be written as

⟨
ϕV

⟩
=

⟨
lim
k→0

4π

k2
ρ̂q(k;R)

⟩
. (B.2)
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Since we are interested in the behavior of  the potential in the limit that the wavevector k approaches
zero, we can expand the Fourier transform of  the charge density for small k:

⟨
ρ̂q(k;R

⟩
) =

⟨
1

V

∫
dre−ik·rρq(r;R)

⟩
∼

⟨
1

V

∫
drρq(r;R)

[
1− ik · r− 1

2
(k · r)2

]⟩
=

1

V
[M(0)− k · M(1)− k⊗ k : M(2)] , (B.3)

where ⊗ is a symmetric outer product, A : B indicates the Frobenius inner product of  the tensors A
and B, and M(n) is the ensemble averaged nth multipole moment of  the charge distribution, which
is a rank n tensor, as detailed in Appendix E.1.

The conditions of  neutrality and zero dipole moment lead to M(0) = 0 and M(1) = 0, so that
the charge density at small k can be written as⟨

ρ̂q(k;R)
⟩
≈ − 1

V
k⊗ k : M(2). (B.4)

If  the second moment tensor is nonzero, but the traceless quadrupole moment is zero, this means
that M(2) is diagonal,

M(2) =

Mxx 0 0
0 Myy 0
0 0 Mzz

 . (B.5)

Now, noting that the diagonal components of k⊗ k are given by (k⊗ k)ii = k2/3, we can perform
the tensor product in Equation B.4 and arrive at

⟨
ρ̂q(k;R)

⟩
≈ −1

3

k2

2V

∫
drr2

⟨
ρq(r;R)

⟩
= −1

3
k2T, (B.6)

where T is the trace of  the second moment tensor M(2). Using this expression, Equation B.2
becomes ⟨

ϕV

⟩
= −4π

3
T = ϕBethe. (B.7)
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C
Ion Solvation from Potential Distribution

Theory

We can arrive at an expression for ∆µQ using the potential distribution theory (PDT) framework.
PDT yields the free energy of  charging as an exponential average:

e−β∆µQ =
⟨
e−βΨ(R)

⟩
0
=

⟨
exp
[
−βQϕ(0;R) + βQ

V

∫
drϕ(r;R)

]⟩
0

=
⟨
e−βQϕBethee−βQ∆ϕ(0;R)eβQϕBethe

⟩
0
=
⟨
e−βQ∆ϕ(0;R)

⟩
0
, (C.1)

or equivalently,

∆µQ = −kBT ln
⟨
e−βQ∆ϕ(0;R)

⟩
0
, (C.2)

where ⟨· · · ⟩0 indicates an ensemble average performed over the system with no charge present.

Equivalently, one could use the inverse form of  PDT, e−β∆µQ =
⟨
eβΨ(R)

⟩−1

Q
, where the ensemble

average is performed over configurations sampled with a charge of  magnitude Q present in the
system (and its neutralizing background). This yields

∆µQ = kBT ln
⟨
eβQ∆ϕ(0;R)

⟩
Q
. (C.3)
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Like the coupling parameter formula 4.18, these PDT expressions for the free energy are formally
exact. However, in practice such exponential averages are difficult to evaluate. Linearization of  the
exponential terms and averaging the two forms for ∆µQ permits the evaluation of  approximate
expressions for the free energy of  the form

∆µQ ≈ 1

2

[⟨
Q∆ϕ(0;R)

⟩
0
+
⟨
Q∆ϕ(0;R)

⟩
Q

]
, (C.4)

which is only appropriate when the distribution of ∆ϕ(0;R) is a Gaussian, and this may not be true
in general.

It is important to note that the quantity appearing in both expressions for the free energy from
PDT involve only the portion of  the solvent electrostatic potential that is induced by the solute. In
fact, this is the exact quantity that appears in the averages that are integrated over in the coupling
parameter integration expression for the free energy Equation 4.18, and the PDT-based Gaussian
approximation to the free energy is just the average of  the end points in the λ-integration. However,
such Gaussian approximations are not valid in general, and exponential averages like Equations C.2
and C.3, while easy to derive and formally exact, are much more difficult to evaluate than
Equation 4.18. More specifically, charging a neutral cavity to a charge Q typically induces a large
structural change that strongly orients interfacial water molecules. Such large structural changes are
typically nonlinear, and we can expect Gaussian approximations like Equation C.4 to be less accurate
than similar equations describing the turning on of  LJ attractions, for example. Therefore, the
λ-integration form of  the free energy in Equation 4.18 may be more practical when evaluating such
free energies from simulation.

162



D
Derivation of  Equation 4.6

The Bethe potential is defined as

ϕBethe = −4π

3
T = −4π

3

1

2

⟨
1

V

∫
drρq(r;R)r2

⟩
. (D.1)

We can now use the definition of  the classical charge density, ρq(r;R) =
∑M

i=1 qiδ(r− ri(R)), where
there are M charges in the system with spatial coordinates ri(R). The Bethe potential can then be
written as

ϕBethe = −4π

3

1

2

⟨
1

V

∫
dr

M∑
i=1

qiδ(r− ri(R))r2
⟩

= −4π

3

1

2

⟨
1

V

M∑
i=1

qir
2
i (R)

⟩
. (D.2)

We can now split the sum over M charges into a sum over N molecules, indexed by n = 1, ..., N ,
and Γ charged sites per molecule, indexed by γ = 1, ...,Γ. Each charge qγ will have a position rγ ,
which is equivalent to the ri used above. The Bethe potential can then be written as

ϕBethe = −4π

3

1

2

⟨
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γ(R)

⟩
. (D.3)

At this point, we make the coordinate transformation r2γ = |rγn − rn|2, where rn is the location of  the
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Figure D.1: Bethe potential ϕBethe(T ) as a function of temperature for the SPC/E model along the
P = 1 atm isobar computed using Equation 4.3 and Equation 4.6. Error bars are smaller than the
symbol size.

center of  molecule n and rγn is the location of  site γ relative to the center of  molecule n. Making this
transformation, we obtain

ϕBethe = −4π

3

1

2

⟨
1

V

N∑
n=1

Γ∑
γ=1

qγ |rγn − rn|2
⟩

= −4π

3

1

2

{⟨
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γn

⟩
+

⟨
1

V

N∑
n=1

r2n

(
Γ∑

γ=1

qγ

)⟩

− 2

⟨
1

V

N∑
n=1

rn

Γ∑
γ=1

qγrγn cos θ

⟩}
, (D.4)

where θ is the angle form by the vectors rγn and rn and we have omitted the dependence of  the
distances on R for convenience.
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The second term in Equation D.4 vanishes due to neutrality,
∑Γ

γ=1 qγ = 0. The third term also
vanishes because the average dipole moment of  the cell is zero. Therefore, the Bethe potential can be
written as

ϕBethe = −4π

3

1

2

⟨
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γn

⟩
. (D.5)

At this point, we note that

Γ∑
γ=1

qγr
2
γn(R) =

Γ∑
γ=1

qγr
2
γ1(R) ∀ n,R, (D.6)

i.e. the molecular quadrupole moments are the same for all molecules independent of  configuration in
the case of  rigid molecular models like SPC/E and TIP5P water. Therefore, our final result for the
Bethe potential is

ϕBethe = −4π

3

1

2

⟨
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γ1

⟩
= −4π

3

1

2

⟨
N

V

⟩ Γ∑
γ=1

qγr
2
γ1

= −4π

3
ρB

1

2

Γ∑
γ=1

qγr
2
γ1 = −4π

3
ρB Tr {Qmol} , (D.7)

which is Equation 4.6. In the case of  rigid intramolecular charge distributions, Equation 4.6 is
completely equivalent to Equation 4.3, as shown in Figure D.1, although the latter is always valid.
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E
LMF-Based Multipole Expansions

E.1 Multipole Moment Expansion of  Gaussian-Smoothed Charge Densities

Here I present the multipole expansion for the Gaussian-smoothed charge density, ρqσ(r), and how it
relates to that of  the bare charge density ρq(r). We consider first the energy of  interaction between
two d-dimensional Gaussian-smoothed charge densities, with centers ri and rj , where the position
vector is defined by

r = (x1, x2, ..., xd) , (E.1)

and d ∈ N. The interaction energy of  the two charge distributions under consideration, ρqσi (ri) and
ρqσj (rj), respectively, is assumed to be of  the form

w(rij) =
∫
dr
∫
dr′ρqσi (r− ri)ρ

qσ
j (r′ − rj)

1

ϵ |r− r′|
. (E.2)

This interaction energy can be rewritten as a k-space integral,

w(rij) =
1

(2π)d

∫
dkρ̂qσi (−k)ρ̂qσj (k)e−ik·rij 4π

ϵk2
, (E.3)
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where we have defined the d-dimensional Fourier transform and inverse Fourier transform of  a
function f as

f̂(k) =
∫
dre−ik·rf(r)

and
f(r) =

1

(2π)d

∫
dkeik·rf̂(k),

respectively.
Now we want to examine the asymptotic behavior as k → 0, so we Tayor expand the smoothed

charge densities about k = 0 as

ρ̂qσi (k) =
∑
ni

1

ni!
kni · ∇ni

k ρ̂
qσ
i (0), (E.4)

where ∇k is the d-dimensional gradient with respect to k. We can then insert E.4 into E.3 to obtain

w(rij) =
∑
ni,nj

1

ni!nj!
[∇ni

k ρ̂
qσ
i (0) · (−i∇r)

ni ] ·
[
∇nj

k ρ̂
qσ
j (0) · (i∇r)

nj
] 1

ϵr
(E.5)

Now, we can define
ini

ni!
∇ni

k ρ̂
qσ
i (0) ≡ Mσ

i (ni), (E.6)

such that
Mσ

i (ni) =
1

ni!

∫
drρqσi (r)rni , (E.7)

and Mσ(n) is the nth multipole moment of  the smoothed charge distribution. Finally, we can
rewrite E.5 as

w(rij) =
∑
ni,nj

[Mσ
i (ni) · (−∇r)

ni ] ·
[
Mσ

j (nj) · ∇nj
r

] 1

ϵr
(E.8)

so that the energy is now expressed in terms of  the multipole moments of  the smoothed charge
distributions.

One may then inquire into how these multipole moments relate to those of  the bare charge
densities, ρq(r). In order to evaluate these expressions, we first consider the Fourier transform of  the
smoothed charge density, which, using the convolution theorem, can be written as

ρ̂qσ(k) = ρ̂q(k)ρ̂G(k), (E.9)
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where
ρ̂G(k) = e−

k2σ2

4 . (E.10)

In general, the nth order multipole moment Mσ(n) is given by

Mσ(n) =
in

n!

n∑
m=0

(
n

m

)
ρ̂q(n−m)(0)⊗ ρ̂

(m)
G (0), (E.11)

where f̂ (n)(0) =
[
∇n

k f̂(k)
] ∣∣∣∣

k=0

is a tensor of  rank n, ⊗ indicates a symmetric outer product, and

(
n

m

)
=

n!

m!(n−m)!

is the binomial coefficient.
The gradients of  the k-space Gaussian function are given by

ρ̂
(n)
G (k) = (−1)ne−k2σ2/4Hn

(
kσ
2

)
, (E.12)

such that Hn (ax) is a rank n tensor-analog of  the Hermite functions with elements

Hij···v(ax;n) = (−1)nea
2x2 ∂n

∂xi∂xj · · · ∂xv

(
e−a2x2

)
, (E.13)

where a is a constant and x = (x1, x2, ..., xd) is a general d-dimensional vector.
All odd derivatives of ρ̂G(k) will vanish at k = 0 due to symmetry, therefore, we can rewrite E.11

as

Mσ(n) =
in

n!

n∑
m=0
m∈E

(−1)m
(
n

m

)
ρ̂q(n−m)(0)⊗ Am

(σ
2

)
, (E.14)

where Am(a) ≡ [Hm (ak)]
∣∣
k=0

and E = {x | x is an even whole number}. Equation E.14 can be
written in the equivalent form

Mσ(n) = M(n) +
n∑

m=2
m∈E

(−1)mim

m!
M(n−m)⊗ Am

(σ
2

)
, (E.15)

making the relation between Mσ(n) and M(n) apparent.
In order for the condition Mσ(n) = M(n) to hold, where M(n) is the nth multipole moment of
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the bare charge distribution ρq , all multipoles of  order less than n− 1 and of  even (odd) order, for n
even (odd), of  the bare charge density must be identically zero,

Mσ(n) = M(n) ⇐⇒ M(s) = 0 ∀ s = n− l, (E.16)

where

l =

{
2, 4, 6, ..., n; for n even
2, 4, 6, ..., n− 1; for n odd.

(E.17)

Now, we present the first few multipole moments of  the Gaussian-smoothed charge density in
order to explicitly illustrate their relation to that of  the bare charge density. The monopole moment
of ρqσ is trivially given by Mσ(0) = M(0), and note that for neutral charge distributions the
monopole moment is zero. The dipole moment, n = 1, is also trivially given by

Mσ(1) = M(1),

illustrating that the dipole moment of ρq is conserved upon Gaussian-smoothing. In addition, the
quadrupole moment is given by

Mσ(2) = M(2)− 1

2
M(0)⊗ A2

(σ
2

)
= M(2) +

σ2

4
M(0)I3, (E.18)

where In is the n×n identity matrix. For neutral charge distributions, like non-ionic molecular charge
distributions, both the dipole and quadrupole moments are conserved upon Gaussian-smoothing.

E.2 Multipole Moment Expansion of  SR Charge Densities

The multipole expansion of  the SR charge density ρqc(r) proceeds in a manner analogous to the
previous section. In order to keep this section brief, only the main points of  the derivation are quoted
herein.

The nth order multipole of ρqc(r) is given by

Mc(n) =
in

n!

n∑
m=0

(
n

m

)
ρ̂q(n−m)(0)⊗ ρ̂(m)

c (0), (E.19)

where ρ̂c(k) = 1− ρ̂G(k). Now, note that ρ̂c(0) = 0, and the gradients of ρ̂c are given by
∇n

k ρ̂c(k) = −∇n
k ρ̂G(k) for n > 0.
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The multipoles of  the SR charge density can finally be written as

Mc(n) =
n∑

m=2
m∈E

(−1)m+1im

m!
M(n−m)⊗ Am

(σ
2

)
, (E.20)

where the reader should note that the sum runs from m = 2 to n, illustrating that the SR charge
density distribution contains no monopole and dipole moments. The first three moments are given by
Mc(0) = 0, Mc(1) = 0, and

Mc(2) = −σ
2

4
M(0)I3, (E.21)

illustrating that the moments Mc(n) contain the portions of  the multipoles that modify the bare
multipoles upon Gaussian smoothing, as detailed in the previous section.

E.3 Gaussian Smoothing of  a Molecule of  SPC/E Water

In order to illustrate the conditions derived above, we consider Gaussian smoothing a single SPC/E
water molecule, something that can be done analytically. The SPC/E model of  water consists of  three
charged sites, all in the same plane, such that the coordinates of  the oxygen, hydrogen 1, and hydrogen
2 are given by r⃗ = (0, 0, 0), r⃗H1 = (rOH sinϕ, 0, rOH cosϕ), and r⃗H2 = (−rOH sinϕ, 0, rOH cosϕ),
respectively, where ϕ = θ/2 is half  of  the H-O-H angle θ = 109.47◦. The hydrogen sites each have
charge q, while the oxygen has charge −2q, such that the molecule is neutral.

The charge density is given by

ρq(r) = qδ(r⃗ − r⃗H1) + qδ(r⃗ − r⃗H2)− 2qδ(r⃗), (E.22)

which has the corresponding Gaussian smoothed charge density

ρqσ(r) =
1

σ3π3/2

{
q exp

[
−
(
|r⃗ − r⃗H1 |

σ

)2
]

+ q exp

[
−
(
|r⃗ − r⃗H2 |

σ

)2
]
− 2q exp

[
−
(
|r⃗|
σ

)2
]}

. (E.23)

Knowing the charge densities, we can evaluate the bare and smoothed multipoles. The zeroth
moment, or total charge, is trivially given by

M(0) =

∫
drρq(r) = 0 = Mσ(0). (E.24)
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The dipole moment, M(1) = (Mx,My,Mz), has components

Mx =

∫
dxx

∫
dy

∫
dzρq(x, y, z) = q(xH1 + xH2) = 0

My =

∫
dx

∫
dyy

∫
dzρq(x, y, z) = 0

Mz =

∫
dx

∫
dy

∫
dzzρq(x, y, z) = q(zH1 + zH2) = 2qzH ,

where zH ≡ zH1 = zH2 and xH1 = −xH2 ≡ xH . Performing the same integrations for ρqσ yields
Mσ

x = Mx, Mσ
y = My , and Mσ

z = Mz . Similarly, the bare and smoothed quadrupole moment
tensors are found to be equivalent. The first moment that is modified by smoothing is the octupole,
and therefore we focus on that now.

Two nonzero components of  the bare octupole tensor M(3) are given by

Mxxz =
1

6

∫
dxx2

∫
dy

∫
dzzρq(x, y, z) =

q

3
x2HzH

Mzzz =
1

6

∫
dx

∫
dy

∫
dzz3ρq(x, y, z) =

q

3
z3H . (E.25)

The same moments of  the smoothed octupole tensor Mσ(3) are given by

Mσ
xxz =

1

6

∫
dxx2

∫
dy

∫
dzzρqσ(x, y, z) =

q

3
x2HzH +

qσ2zH
6

= Mxxz +
σ2

4

Mz

3
, (E.26)

and

Mσ
zzz =

1

6

∫
dx

∫
dy

∫
dzz3ρqσ(x, y, z) =

qz3H
3

+
σ2qzH

2

= Mzzz +
σ2

4
Mz. (E.27)

This illustrates that the octupole moment is indeed modified nontrivially in terms of  the dipole
moment upon Gaussian smoothing of  the charge density, but is this modification consistent with the
general form of Mσ(n) presented above?

From Equation E.15, we can write

Mσ(3) = M(3)− 1

2
M(1)⊗ A2

(σ
2

)
, (E.28)
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where A2(a) = −2a2I3. Now we define T ≡ M(1)⊗ A2

(
σ
2

)
as the rank 3 tensor formed by the

symmetric outer product of M(1) and A2

(
σ
2

)
. The xxz and zzz components of  this tensor are

given by

Txxz =
1

3
MzAxx = −σ

2

2

Mz

3

Tzzz = MzAzz = −σ
2

2
Mz. (E.29)

Inserting these expressions for the components of T into the relation for Mσ(3) yields the
smoothed octupole components

Mσ
xxz = Mxxz +

σ2

4

Mz

3
(E.30)

Mσ
zzz = Mzzz +

σ2

4
Mz, (E.31)

consistent with the results presented above.

E.4 Point Charge Distribution

In this section, we further illustrate the above conclusions by considering a single point charge of
magnitude Q, such that the bare charge density of  interest is given by

ρq(r) = Qδ(r). (E.32)

The point charge density is split into SR and LR portions, then the multipole expansion is performed.
The SR and LR portions of  a point charge are given by

ρqc(r) = Qδ(r)−QρG(r) (E.33)

and
ρqσ(r) = QρG(r), (E.34)

respectively, where

ρG(r) =
1

σ3π3/2
e−

r2

σ2 (E.35)

is a normalized Gaussian distribution (
∫
drρG(r) = 1).

In general, we can use the results of  Appendix E.2 to determine the multipole moments of ρqc(r),
but the charge density is simple enough to readily evaluate the first three moments. The monopole
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moment of ρqc(r) is given by

Mc
PC(0) =

∫
drρqc(r) = Q

∫
drδ(r)−Q

∫
drρG(r) = Q−Q = 0, (E.36)

illustrating that the SR charge density is neutral. The dipole moment is also zero:

Mc
PC(1) = Q

∫
drrδ(r)−Q

∫
drrρG(r) = 0− 0 = 0. (E.37)

As can be expected from Appendix E.2, the first nonzero moment will be the quadrupole
moment. The diagonal components of  the quadrupole tensor are given by

Mc
ii =

Q

2

∫
drx2i δ(r)−

Q

2

∫
drx2i ρG(r) = 0− σ2

4
Q, (E.38)

and the off-diagonal elements are zero, such that the components of  the quadrupole tensor are given
by Mc

ij = −δijQσ2/4, where δij is the Kronecker delta function. Therefore, the quadrupole
moment of  the SR charge density is

Mc
PC(2) = −σ

2

4
QI3. (E.39)

All odd multipoles of  the SR point charge density ρqc(r) will vanish due to symmetry, and the even
moments are in general given by the m = n term of  Equation E.20, a direct consequence of  the only
nonzero moment of ρq(r) being the monopole.

The multipoles of  the LR point charge density ρqσ(r) can readily be obtained following
Appendix E.1, but we can readily evaluate the first three moments for illustrative purposes. The
monopole moment is given by

Mσ
PC(0) =

∫
drρqσ(r) = Q

∫
drρG(r) = Q, (E.40)

consistent with the idea that long-ranged electrostatics like neutrality, or in this case charge, are
contained in the LR charge density. The dipole moment is again zero:

Mσ
PC(1) =

∫
drrρqσ(r) = 0. (E.41)

The discussion in Section III, as well as that in Appendix E.1, indicates that the smoothed
quadrupole moment should be modified non-trivially in terms of  the bare monopole. This
quadrupole tensor is given simply by the negative of  the SR quadrupole tensor,
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Mσ
PC(2) = −Mc

PC(2), which is a result specific to the special case of  a bare charge distribution that
has a non-zero bare monopole moment, but a zero bare quadrupole moment, as is the case for a
point charge.

In general, for the very special case of  taking a point charge as the bare charge distribution, all LR
multipoles of  order n ≥ 2 are equal to the negative of  the corresponding SR multipoles:

Mσ
PC(n) = −Mc

PC(n) ∀ n ≥ 2. (E.42)

Note that this indicates that a Gaussian charge distribution not only has a nonzero monopole
moment, but all even multipole moments of  a Gaussian charge distribution are nonzero.
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F
Coupling Parameter Integration

We can also obtain the free energy of  turning on the Gaussian charge distribution using coupling
parameter integration. We first introduce a parameter λ which linearly couples to the field of  the
Gaussian charge,

v
(λ)
Q (r) = λQv1(r) = λvQ(r), (F.1)

so that a potential energy term,

Ψλ(R) =
N∑
i=1

qiv
(λ)
Q (ri(R)) =

∫
drv(λ)Q (r)ρq(r;R) (F.2)

appears in the Hamiltonian.
Taking the derivative of  the free energy

Gl(λ) ∝ −kBT ln
∫
dRe−βH0(R)e−βΨλ(R), (F.3)

with respect to λ, where H0 is the portion of  the Hamiltonian describing solvent-solvent interactions,
we find the well known result

∂Gl

∂λ
=

⟨
∂Ψλ(R)
∂λ

⟩
λ

(F.4)
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We can now integrate over the coupling parameter to arrive at

∆Gl =

∫ 1

0

dλ

∫
dr
dv

(λ)
Q (r)

dλ
ρqλ(r) =

∫ 1

0

dλ

∫
drvQ(r)ρ

q
λ(r), (F.5)

where ρqλ(r) =
⟨
ρq(r;R)

⟩
λ
.

At this point, we can utilize Equation 5.14 to write the charge density in state λ as

ρqλ(r) = −λQ
(
1− 1

ϵ

)
1

l3π3/2
e−r2/l2 . (F.6)

We can now use Equation F.6 in Equation F.5, in conjunction with Parseval’s theorem, to arrive at our
final result

∆Gl = −Q
(
1− 1

ϵ

)∫ 1

0

dλλ

∫
drvQ(r)

e−r2/l2

l3π3/2

= −Q
2

2

(
1− 1

ϵ

)
1

(2π)3

∫
dke−k2l2/24π

k2

= − Q2

l
√
2π

(
1− 1

ϵ

)
. (F.7)
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G
Further Consequences of  Equation 5.7

Within the Gaussian approximation, a cumulant expansion of  Equation 5.2 yields

∆Gl =
⟨
Ψ(R)

⟩
0
− β

2

⟨(
δΨ0(R)

)2⟩
0

=
⟨
Ψ(R)

⟩
Q
+
β

2

⟨(
δΨQ(R)

)2⟩
Q
, (G.1)

where δΨ0/Q(R) ≡ Ψ(R)−
⟨
Ψ(R)

⟩
0/Q

. When this approximation is valid,⟨(
δΨ0(R)

)2⟩
0
=
⟨(
δΨQ(R)

)2⟩
Q
≡
⟨(
δΨ(R)

)2⟩
, (G.2)

where we will leave off  the subscript due to the equality. Now, if  we use the above result⟨
Ψ(R)

⟩
0
= 0, we arrive at the following relation between the first and second cumulants,⟨

Ψ(R)
⟩
Q
= −β

⟨(
δΨ(R)

)2⟩
. (G.3)

This result can also be obtained utilizing Equation 5.8. We can write the energy in the presence of
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the field as ⟨
Ψ(R)

⟩
Q

=

∫
drρqQ(r)vQ(r)

= −β
∫
dr
∫
dr′χqq

0 (|r− r′|)vQ(r)vQ(r
′)

= −β
∫
dr
∫
dr′
⟨
δρq0(r;R)δρ

q
0(r

′;R)
⟩
0
vQ(r)vQ(r

′). (G.4)

Upon noting that δρq0(r;R) = ρq(r;R)−
⟨
ρq(r;R)

⟩
0
= ρq(r;R), we can write

⟨
Ψ(R)

⟩
Q

= −β
∫
dr
∫
dr′
⟨
ρq(r;R)ρq(r′;R)

⟩
0
vQ(r)vQ(r

′)

= −β
⟨
Ψ2(R)

⟩
0
, (G.5)

which is a specific form of  Equation G.3, upon noting that
⟨(
δΨ(R)

)2⟩
0
=
⟨
Ψ2(R)

⟩
0
.
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H
Derivation of  Equation 6.16 from Mean-Field

Approximations to Equation 6.6

We can begin with Equation 6.14 and make the following mean-field (MF) approximations: the
nonuniform pair density is approximated by

ρ
(2)
R (r, r′) ≈ ρ(2)(r, r′) ≈ ρ(r)ρ(r′), (H.1)

the uniform pair density is given by

ρ
(2)
B,R(|r− r′|) ≈ ρ

(2)
B (|r− r′|) ≈ ρ2B, (H.2)

and the difference between the chemical potentials of  the full and mimic systems is approximated by

β [µ− µR] ≈ −2βρBa, (H.3)
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where a = −
∫
dr′u1(|r− r′|) is the van der Waals constant. Upon making these MF approximations,

the λ integration may be performed over the path discussed in the text, and Equation 6.6 becomes

βΩsolv[ϕ]− βΩR,solv[ϕR] =
β

2

∫
dr
∫
dr′
[
ρ(r)ρ(r′)− ρ2B

]
u1(|r− r′|)

− β

∫
drρ(r) [ϕR(r)− ϕ(r)]

+ 2βρBa

∫
dr [ρ(r)− ρB] . (H.4)

Now, note that ϕR(r)− ϕ(r) =
∫
dr′ [ρ(r′)− ρB]u1(|r− r′|). Equation H.4 can then be rewritten as

βΩsolv[ϕ]− βΩR,solv[ϕR] =
β

2

∫
dr
∫
dr′
[
ρ(r)ρ(r′)− ρ2B

]
u1(|r− r′|)

− β

∫
drρ(r) [ρ(r′)− ρB]u1(|r− r′|) + 2βρBa

∫
dr [ρ(r)− ρB]

=
β

2

∫
dr
∫
dr′
[
ρ(r)ρ(r′)− ρ2B

]
u1(|r− r′|) + 2βρBa

∫
drρ(r)

− 2βρBa

∫
drρ(r)− 2β

∫
draρ2B

− β

∫
dr
∫
dr′ρ(r)ρ(r′)u1(|r− r′|). (H.5)

Inserting the explicit expression for a and grouping like terms, we arrive at

βΩsolv[ϕ]− βΩR,solv[ϕR] =
β

2

∫
dr
∫
dr′
[
ρ(r)ρ(r′)− ρ2B

]
u1(|r− r′|)

− β

∫
drdr′

[
ρ(r)ρ(r′)− ρ2B

]
u1(|r− r′|)

= −β
2

∫
dr
∫
dr′
[
ρ(r)ρ(r′)− ρ2B

]
u1(|r− r′|), (H.6)

which is Equation 6.16. Although the desired result is obtained from MF approximations, making use
of  such expressions is not justified in general. The derivation of  Equation 6.16 in Section 6.2 involved
the use of  the LMF equation, which is obtained independently and is accurate in its own right, with
appropriate separation of  the potential into rapidly- and slowly-varying parts. Therefore, the MF
approximations used in this Appendix are only justified when the interaction potential u1(r) satisfies
the conditions on the LMF equation.
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I
Stable iteration of  the LMF equation for systems

with a net charge

We first separate the electrostatic LMF VR(r) into its short and long ranged components,

VR(r) = V0(r) + VR1(r), (I.1)

such that VR1(r) is the slowly-varying portion of  the renormalized potential. This potential is given by

VR1(r) =

∫
dr′ρqR(r

′)v1(|r− r′| ;σ) +
∫
dr′ρqion(r

′)v1(|r− r′| ;σ)

=

∫
dr′ρqσR (r′)

1

|r− r′|
+

∫
dr′ρqσion(r

′)
1

|r− r′|
, (I.2)

where ρqR(r) and ρqσR (r) are the bare and Gaussian smoothed charge densities of  the solvent, and
ρqion(r) = Qδ(r) and ρqσion(r) = QρG(r; σ) are the bare and Gaussian smoothed charge densities of  the
ion.

Equation I.2 can then be rewritten in the following form

VR1(r) =
∫
dr′ [ρqσR (r′) +QρG(r′; σ)]

1

|r− r′|
. (I.3)
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This illustrates that VR1(r) is the electrostatic potential arising from a fixed Gaussian charge
distribution of  width σ placed at the origin and the charge density of  the mobile solvent charges, after
these mobile charges have been convoluted with Gaussian distributions of  charge also of  width σ.
Therefore, we can consider ρqσR (r) to be the “response” of  the dielectric to the Gaussian charge
QρG(r;σ).

To arrive at a stable iteration scheme, we can simply treat VR1(r) as the total electrostatic potential
in this new system, and employ LMF theory to map this system onto another mimic system with a
smoothing length l. Separating VR1(r) into its short and long ranged components yields
VR1(r) = VA

R1(r) + VB
R1(r). The new LMF potential, which is the long ranged component VB

R1(r), is
given by

VB
R1(r) =

∫
dr′ρqσR (r′)v1(|r− r′| ; l) +

∫
dr′QρG(r′; σ)v1(|r− r′| ; l)

≡ VB
S (r) + VB

1 (r). (I.4)

The portion of VB
R1(r) due to the fixed Gaussian charge distribution is readily evaluated using the

convolution theorem, V̂B
1 (k) = 4πk−2Q exp(−k2γ2/4), which in real space is

VB
1 (r) = Qv1(r; γ), (I.5)

such that the long ranged component of  the potential arising from a Gaussian charge distribution of
width σ is the potential of  Gaussian with width

γ ≡
√
l2 + σ2. (I.6)

We now turn our attention to the evaluation of  the solvent component of  the potential, VB
S (r). In

our analogy to a system comprised of  Gaussian charges, ρqσR (r) is the charge density induced by the
Gaussian charge QρG(r;σ). Analytic approximations for this induced response were derived in
Chapter 5, yielding

ρqσR (r) ≈ −Q
(
1− 1

ϵ

)
e−r2/σ2

σ3π3/2
. (I.7)

The corresponding solvent portion of  the LMF is then given by

V̂ B
S (k) ≈ −4π

k2
Q

(
1− 1

ϵ

)
exp(−k2γ2/4), (I.8)

or

VB
S (r) ≈ −Q

(
1− 1

ϵ

)
v1(r; γ) (I.9)
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in real space. The total long ranged portion of  the renormalized electrostatic potential is then
obtained from the sum of  the portions due to the fixed and mobile charges,

VB
R1(r) = VB

S (r) + VB
1 (r) ≈

Q

ϵ
v1(r; γ), (I.10)

such that VB
R1(r) → Q/ϵr as r → ∞, which is the desired asymptotic behavior.

This stable iteration scheme for systems with a net charge requires solution of  the relatively short
ranged portion of  the renormalized field

VA
R1(r) =

∫
dr′ [ρqσR (r′) +QρG(r′; σ)] v0(|r− r′| ; l) (I.11)

from simulation data, while the long ranged, slowly varying component VB
R1(r) is approximated by

Equation I.10 at each iteration. This method of  self-consistently solving the LMF equation is
employed when calculating the ion solvation free energies presented in Section 6.2.3.
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J
LMF Free Energy Calculations with Multiple

Equilibrium States

J.1 The Multi-State Bennett Acceptance Ratio in the Full System

We first review the MBAR method in this section before combining it with LMF theory. Following
the work of  Shirts and Chodera [68], and Varilly [144], we consider an equilibrium, Boltzmann
ensemble with a configurational partition function

Z =

∫
dRe−βU(R) (J.1)

and free energy F = −β−1 lnZ , such that U(R) is the potential energy of  the system in a
configuration R. This will be referred to as the unbiased ensemble.

Now, consider a set of K biasing (umbrella) potentials {V1, V2, ..., VK}. For each biasing potential
Vk, Nk statistically independent samples, labeled Rk,n, are collected, which are Boltzmann-weighted
with a potential U(R) + Vk(R). The partition function and free energy in the ensemble defined by
the potential Vk are then

Zk =

∫
dRe−β[U(R)+Vk(R)] (J.2)

and Fk = −β−1 lnZk, respectively.
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We then define the free energy difference between the ensemble corresponding to the kth window
and the unbiased ensemble as

∆Fk ≡ Fk − F = β−1 ln (Z/Zk) . (J.3)

Now, we construct a model of  the probability density of  the unbiased ensemble, P (R),
constructed as a sum of  Dirac δ-functions centered at each of  the N1 + ...+NK samples observed,
with unknown weights pj,n:

P (R) ≈ Z−1

K∑
j=1

Nj∑
n=1

pj,nδ(R− Rj,n). (J.4)

Analogously, the probability density of  the kth biased ensemble is

Pk(R) ≈ Z−1
k

K∑
j=1

Nj∑
n=1

pj,ne
−βVk(R)δ(R− Rj,n). (J.5)

The normalization constants are given by

Z =
K∑
j=1

Nj∑
n=1

pj,n (J.6)

and

Zk =
K∑
j=1

Nj∑
n=1

pj,ne
−βVk(Rj,n). (J.7)

These are the best estimates to Z and Zk, respectively, up to an undetermined measure factor, such
that Z/Zk ≈ Z/Zk.

An estimate of  the free energy differences between biased ensembles and the unbiased ensemble is
enough to estimate the probability of every observed sample in the unbiased ensemble (this statement
will be key to using LMF theory to estimate averages using biased sampling, as described later). These
free energy differences are obtained by self-consistent iteration using the multi-state Bennett
acceptance ratio (MBAR) as

e−β∆Fi =
K∑
j=1

Nj∑
n=1

e−βVi(Rj,n)∑K
k=1Nkeβ∆Fk−βVk(Rj,n)

. (J.8)
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Once the set of  free energy differences {∆Fk} are obtained, ensemble averages of  an observable
A(R) can then be estimated as

⟨A⟩ ≈
K∑
j=1

Nj∑
n=1

A(Rj,n)∑K
k=1Nkeβ∆Fk−βVk(Rj,n)

, (J.9)

where the approximation only appears because we have a finite number of  samples Nj in each
simulation window j.

J.2 Ensemble Averages in the Full System from Biased Sampling Performed in the
Mimic System

We now consider performing umbrella sampling in the mimic system. Each of  the K biased
ensembles will have an associated LMF. Therefore, we will have a set of  renormalized fields {ϕR,k(r)}
associated with each of  the K windows. The partition function in the unbiased mimic ensemble is
given by

ZR =

∫
dRe−β[U0(R)+ΦR1(R)], (J.10)

and the partition function of  the kth biased window is

ZR,k =

∫
dRe−β[U0(R)+ΦR1,k(R)+Vk(R)], (J.11)

where ΦR1,k =
∑N

i=1 ϕR1,k(ri). The free energy difference between the kth window and the unbiased
mimic ensemble is given by

∆FR,k = FR,k − FR = β−1 ln
(
ZR

ZR,k

)
. (J.12)

In analogy with the previous section, estimates for the normalization constants ZR and ZR,k are
given respectively by

ZR ≈
K∑
j=1

Nj∑
n=1

p
(R)
j,n (J.13)

and

ZR,k ≈
K∑
j=1

Nj∑
n=1

p
(R)
j,ne

−βVk(Rj,n)e−β∆ΦR1,k(Rj,n), (J.14)
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where ∆ΦR1,k ≡ ΦR1,k − ΦR1.
The set of  free energy differences {∆FR,k} can then be obtained in analogy with those of  the full

system, Equation J.8, by replacing Vk(R) with Ṽk(R) ≡ Vk(R) + ∆ΦR1,k(R) and pj,n with p(R)j,n :

e−β∆FR,i =
K∑
j=1

Nj∑
n=1

e−βṼi(Rj,n)∑K
k=1Nkeβ∆FR,k−βṼk(Rj,n)

. (J.15)

The ∆ΦR1,k term presents a problem, since we may not know ϕR1(r) of  the unbiased ensemble in
advance (if  we could obtain this easily, we would not need to overcome sampling issues in the first
place!). However, the free energy differences obtained from the MBAR calculation are known up to
an undetermined constant. Therefore, we can choose this constant such that it exactly cancels the
ΦR1 term in each window, and we can write

e−β∆FR,i =
K∑
j=1

Nj∑
n=1

e−β[Vi(Rj,n)+ΦR1,i(Rj,n)]∑K
k=1Nke

β[∆FR,k−Vk(Rj,n)−ΦR1,k(Rj,n)]
, (J.16)

without any loss of  generality. Ensemble averages in the mimic system can then be estimated
following

⟨A⟩R ≈
K∑
j=1

Nj∑
n=1

AR(Rj,n)∑K
k=1Nke

β[∆FR,k−Vk(Rj,n)−ΦR1,k(Rj,n)]
, (J.17)

where the notation AR emphasizes that the observable A is evaluated over configurations in the
mimic system.

However, averages in the mimic system are not of  interest, and we want to calculate averages in the
full system. As stated earlier, the free energy differences between the unbiased full ensemble and the
K biased full ensembles is enough to estimate the probability of every sample in the unbiased
ensemble of  the full system. From the LMF theory-based framework for free energy calculations, we
know that the free energy energy difference between the full and mimic systems is given by

F − FR = FLMF = −1

2

∫
dr [ρR(r) + ρB] [ϕR(r)− ϕ(r)] . (J.18)

Therefore, the free energy difference between the kth biased mimic ensemble and the kth biased full
ensemble is given by an analogous expression,

Fk − FR,k = FLMF,k = −1

2

∫
dr [ρR,k(r) + ρB] [ϕR,k(r)− ϕk(r)] . (J.19)
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Now, note that ∆Fk = Fk − F are the desired free energy differences, and we can define
F̃k ≡ FR,k +FLMF,k to be the LMF theory based estimate of  the free energy in the kth window of  the
full system. By again taking advantage of  the fact that the free energies determined using MBAR have
an undetermined constant, averages in the full, unbiased ensemble can be obtained from

⟨A⟩ ≈
K∑
j=1

Nj∑
n=1

AR(Rj,n)∑K
k=1Nke

β[∆FR,k+FLMF,k−Vk(Rj,n)]
. (J.20)

Equation J.20 is the main result of  this subsection, and states that averages in the unbiased, full
ensemble can be obtained from calculations in the mimic system by simply reweighting the free energy
differences between windows by a simple, analytic correction, FLMF,k.

J.3 Ensemble Averages in the Full System from Biased Sampling Performed in the
Strong Coupling System

Within the linear response regime, we can seek to evaluate the full free energy directly from the SCA
system, as was done above in the case of  HS solvation in water. We again consider K biasing
potentials and the corresponding biased ensembles in the strong-coupling (SCA) system. The
unbiased SCA ensemble has a partition function

Z0 =

∫
dRe−βU0(R), (J.21)

while the kth biased SCA ensemble has the partition function

Z0,k =

∫
dRe−β[U0(R)+Vk(R)]. (J.22)

The free energy difference between the kth biased SCA ensemble and the unbiased SCA ensemble is

∆F0,k = F0,k − F = β−1 ln
(
Z0

Z0,k

)
. (J.23)

This set of  free energy differences can be obtained using MBAR, in analogy with the full system, as

e−β∆F0,i =
K∑
j=1

Nj∑
n=1

e−βVi(Rj,n)∑K
k=1Nkeβ∆F0,k−βVk(Rj,n)

, (J.24)
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and averages in the SCA system can be obtained following

⟨A⟩0 ≈
K∑
j=1

Nj∑
n=1

A0(Rj,n)∑K
k=1Nkeβ∆F0,k−βVk(Rj,n)

. (J.25)

where the notation A0 is used to emphasize that the observable A is evaluated over configurations in
the SCA system.

However, as stated above, we are really interested in averages in the full system. These averages can
be calculated if  we have an estimate for the set of  free energy differences {∆Fk}. To obtain this set
of  free energy differences, we note that

∆Fk = Fk − F ≈ FR,k + FLMF,k − F

= F0,k + FR1,k + FLMF,k − F, (J.26)

where FR1,k is the free energy of  turning on the LMF ϕR1,k(r) in the kth biased ensemble. Using
LRT, we can estimate the set of  renormalized fields {ϕR,k(r)}, and the free energy of  turning on each
field in the corresponding biased ensemble is given by the Gaussian approximation,

FR1,k ≈
1

2

∫
dr [ρR,k(r) + ρ0,k(r)]ϕR1,k(r). (J.27)

Once the renormalized potentials are determined using LRT, we can also calculate the LMF free
energy term,

FLMF,k = −1

2

∫
dr [ρR,k(r) + ρB] [ϕR,k(r)− ϕk(r)] . (J.28)

By again taking advantage of  the fact that the free energy differences {∆F0,k} are determined up
to some unknown constant, we can estimate averages in the full system from umbrella simulations of
the SCA system through reweighting,

⟨A⟩ ≈
K∑
j=1

Nj∑
n=1

A0(Rj,n)∑K
k=1Nke

β[∆F0,k+FR1,k+FLMF,k−Vk(Rj,n)]
. (J.29)

If FR1,k can be obtained accurately with the Gaussian approximation for all k, this is the most
efficient way to estimate ⟨A⟩. If  not, then {∆FR,k} would need to be determined from biased
simulations in the mimic system.
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K
Liquid-Vapor Interfaces of  Truncated Water

Models

In this Appendix, we present details of  the structure and height flucutations of  the liquid-vapor
interface of  several truncated water models. We examine the structure of  these interfaces using the
instantaneous interface formalism developed by Willard and Chandler [145]. The instantaneous
density field as function of  the spatial coordinate r and time t is defined as

ρ(r, t) =
∑
i

δ(r− ri(t)), (K.1)

where ri(t) is the position of  particle i at time t and the sum is over all particles of  interest. This bare
density field is then coarse-grained via convolution with a truncated and shifted Gaussian density
function,

ρG(r; ξ) = (2πξ2)−d/2
[
e−r2/2ξ2 − e−r2c/2ξ

2
]
, (K.2)

where ξ is the width of  the Gaussian, |rc| is the distance at which the Gaussian is truncated and
shifted to zero, here chosen to be equal to 3ξ, and d is the dimensionality of  the system.

Convolution of  the bare density field yields the coarse-grained density field

ρξ(r, t) =
∑
i

ρG(|r− ri(t)| ; ξ). (K.3)
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Figure K.1: Snapshot of a single configuration of the liquid-vapor slab of water (red oxygen sites
and white hydrogen sites) with its instantaneous interface (pink). Note that there are two interfaces
present in the system.

The interface at space-time point (r, t) is then defined as the (d− 1)-dimensional manifold r = s
along which the coarse-grained density field is a specified constant, ρξ(s, t) = ρc. Note that s = s(t)
is a time-dependent quantity which varies with the set of  coordinates of  the particles. Following
Willard and Chandler, we utilize a smoothing length of ξ = 2.4 Å and a density cutoff  of
approximately half  the bulk number density, ρc = 0.016 Å−3. A typical configuration of  this interface
for a slab of  water in equilibrium with its vapor is illustrated in Figure K.1, where the non-planar,
fluctuating nature of  this interface is readily apparent.

The nonuniform density with respect to the instantaneous interface is given by

ρs(z) =
1

L2

⟨∑
i

δ(ai − z)

⟩
, (K.4)
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Figure K.2: Nonuniform density with respect to (a) the mean liquid-vapor interface and (b) the in-
stantaneous liquid-vapor interface for the four systems under study.

where the proximity of  particle i to the instantaneous interface is

ai(t) = {[s(t)− ri(t)] · n̂(t)}
∣∣
s(t)=s∗i (t)

, (K.5)

such that ⟨·⟩ indicates an equilibrium average, n̂(t) is the unit vector normal to interface at s(t), and
s∗i (t) is the point on s(t) nearest to ri(t). Analogously, the density profile with respect to the mean
interface can be written as

ρ(z) =
1

L2

⟨∑
i

δ(bi − z)

⟩
, (K.6)

where
bi(t) = [⟨s⟩ − ri(t)] · ⟨n̂⟩ . (K.7)

The nonuniform densities ρ(z) and ρs(z) are shown in Figures K.2a and K.2b, respectively. The
density ρ(z) for SPC/E and GT is typical of  that for a liquid-vapor interface; ρ(z) monotonically
decreases from the liquid to the vapor due to broadening by interfacial fluctuations. The ρ(z)
obtained for the GTRC model is qualitatively similar to that of  the SPC/E and GT models, albeit that
interfacial width is significantly larger. In addition, the bulk density of  the GTRC is roughly 15
percent lower than that of  the SPC/E model.
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Mean-field theories, LMF theory included, cannot capture capillary wave fluctuations. Therefore,
we would expect to observe layering at the liquid-vapor interface of  the GTRC model in the presence
of  the LMF ϕLJ

R (z). Indeed, ρ(z) obtained for the system (GTRC-LMF in Figure K.2a) displays a
small peak at the interface, indicative of  layering. However, there still exists some broadening of ρ(z)
due to the presence of  small wavelength fluctuations in the system.

We now turn our attention to the nonuniform density with respect to the instantaneous interface,
ρs(z), shown in Figure K.2b. The profiles obtained for the SPC/E, GT, and GTRC-LMF systems are
nearly identical, illustrating that layering at the interface is the same in all three systems and is
independent of  the amount of  interfacial fluctuations present in the system. Analogous to the results
obtained for ρ(z), ρs(z) for the GTRC model is qualitatively similar to that of  the other systems.
However, the features of ρs(z) are broadened due to the more diffuse interface and lower bulk
density.

Table K.1: Mean Squared Interfacial Height Fluctuations
System ⟨(δh(x))2⟩ (Å2)
SPC/E 1.14±0.09

GT 1.31±0.15
GTRC 3.1 ±0.7

GTRC-LMF 0.34±0.03

Finally, we conclude this Appendix by using the instantaneous interface to calculate the average
fluctuations in the interfacial height, ⟨(δh(x))2⟩, where δh(x) = h(x)− ⟨h(x)⟩ is the deviation in the
interfacial height from its mean. The mean squared height fluctuations are listed in Table K.1. The
results for SPC/E and its truncated variants are consistent with their respective surface tensions,
⟨(δh(x))2⟩GTRC

> ⟨(δh(x))2⟩GT
> ⟨(δh(x))2⟩SPC/E

. In addition, the interfacial fluctuations of  the
GTRC model in the presence of  the LJ-LMF ϕLJ

R (z) are significantly significantly damped, and
⟨(δh(x))2⟩GTRC−LMF is nearly 70 % smaller than that of  the SPC/E model.

193



References

[1] J. M. Rodgers and J. D. Weeks. Local molecular field theory for the treatment of  electrostatics.
J. Phys.: Condens. Matter, 20:494206, 2008.

[2] J. M. Rodgers and J. D. Weeks. Interplay of  local hydrogen-bonding and long-ranged dipolar
forces in simulations of  confined water. Proc. Natl. Acad. Sci. USA, 105:19136, 2008.

[3] J. D. Weeks. Connecting local structure to interface formation: A molecular scale van der waals
theory of  nonuniform liquids. Annu. Rev. Phys. Chem., 53:533–562, 2002.

[4] Y. G. Chen and J. D. Weeks. Local molecular field theory for effective attractions between like
charged objects in systems with strong coulomb interactions. Proc. Natl. Acad. Sci. USA,
103:7560, 2006.

[5] Y. G. Chen, C. Kaur, and J. D. Weeks. Connecting systems with short and long ranged
interactions: Local molecular field theory for ionic fluids. J. Phys. Chem. B, 108:19874, 2004.

[6] J. D. Weeks, D. Chandler, and H. C. Andersen. Role of  repulsive forces in determining the
equilibrium structure of  simple liquids. J. Chem. Phys., 54:5237–5247, 1971.

[7] B. Widom. Intermolecular forces and the nature of  the liquid state. Science, 157:375–382, 1967.

[8] J. S. Rowlinson and B. Widom. Molecular Theory of  Capillarity. Dover Publications, Inc., 2002.

[9] H. C. Andersen, J. D. Weeks, and D. Chandler. Relationship between the hard-sphere fluid and
fluids with realistic repulsive forces. Phys. Rev. A, 4:1597–1607, 1971.

[10] R. Evans. Density functionals in the theory of  nonuniform fluids. In D. Henderson, editor,
Fundamentals of  Inhomogenous Fluids, chapter 3. Marcel Dekker, Inc., 1992.

[11] J. M. Rodgers, Z. Hu, and J. D. Weeks. On the efficient and accurate short-ranged simulations
of  uniform polar molecular liquids. Mol. Phys., 109:1195–1211, 2011.

194



[12] L. R. Pratt, A. Pohorille, and D. Asthagiri. What is special about water as a matrix of  life?
arxiv:physics/0701282, Jan 2007.

[13] P. Ball. Water as an active constituent in cell biology. Chem. Rev., 108:74–108, 2008.

[14] D. Chandler. Interfaces and the driving force of  hydrophobic assembly. Nature, 437:640–647,
2005.

[15] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair
potentials. J. Phys. Chem., 91:6269–6271, 1987.

[16] M. Chaplin. Water structure and science. http://www.lsbu.ac.uk/water/, July 2013.

[17] R. C. Remsing, J. M. Rodgers, and J. D. Weeks. Deconstructing classical water models at
interfaces and in bulk. J. Stat. Phys., 145:313–334, 2011.

[18] F. H. Stillinger. Structure in aqueous solutions of  nonpolar solutes from the standpoint of
scaled-particle theory. J. Solution Chem., 2:141–158, 1973.

[19] K. Lum, D. Chandler, and J. D. Weeks. Hydrophobicity at small and large length scales. J. Phys.
Chem. B, 103:4570–4577, 1999.

[20] R. C. Remsing and J. D. Weeks. Dissecting hydrophobic hydration and association. J. Phys.
Chem. B, (in press), 2013.

[21] G. Guillot. A reappraisal of  what we have learnt during three decades of  computer simulations
of  water. J. Mol. Liq., 101:219–260, 2002.

[22] C. Vega, J. L. F. Abascal, M. M. Conde, and J. L. Aragones. What ice can teach us about water
interactions: A critical comparison of  the performance of  different water models. Faraday
Discuss., 141:251–276, 2009.

[23] L. Xu, S. V. Buldyrev, C. A. Angell, and H. E. Stanley. Thermodynamics and dynamics of  the
two-scale spherically symmetric jagla ramp model of  anomalous liquids. Phys. Rev. E,
74:031108, 2006.

[24] Z. Yan, S. V. Buldyrev, N. Giovambattista, and H. E. Stanley. Structural order for one-scale and
two-scale potentials. Phys. Rev. Lett., 95:130604, 2005.

[25] S. V. Buldyrev, P. Kumar, P. G. Debenedetti, and P. J. Rossky. Water-like solvation
thermodynamics in a spherically symmetric solvent model with two characteristic lengths. Proc.
Natl. Acad. Sci. USA, 104:20177–20182, 2007.

195



[26] J. P. Hansen and I. R. McDonald. Theory of  Simple Liquids. Elsevier Ltd., 2006.

[27] J. M. Rodgers and J. D. Weeks. Accurate thermodynamics for short-ranged truncations of
coulomb interactions in site-site molecular models. J. Chem. Phys., 131:244108, 2009.

[28] A. Ben-Naim and F. H. Stillinger. Water and Aqueous Solutions: Structure, Thermodynamics, and
Transport Processes. Wiley-Interscience, New York, 1972.

[29] A. Luzar and D. Chandler. Effect of  environment on hydrogen bond dynamics in liquid water.
Phys. Rev. Lett., 76:928–931, 1996.

[30] W. Smith, C. Yong, and P. Rodger. DL_POLY: Application to molecular simulation. Mol.
Simul., 28:385–471, 2002.

[31] M. P. Allen and D. J. Tildesley. Computer Simulation of  Liquids. Oxford: New York, 1987.

[32] H. J. C. Berendsen, J. P. M Postma, W. F. van Gunsteren, A. DiNiola, and J. R. Haak. Molecular
dynamics with coupling to an external bath. J. Chem. Phys., 81:3684, 1984.

[33] S. H. Lee and P. J. Rossky. A comparison of  the structure and dynamics of  liquid water at
hydrophobic and hydrophilic surfaces – a molecular dynamics simulation study. J. Chem. Phys.,
100:3334–3345, 1994.

[34] I. C. Yeh and M. L. Berkowitz. Ewald summation for systems with slab geometry. J. Chem.
Phys., 111:3155–3162, 1999.

[35] W. M. Haynes, editor. CRC Handbook of  Chemistry and Physics, 91st Edition (Internet Version 2011).
CRC Press/Taylor and Francis, Boca Raton, FL, 2011.

[36] H. S. Ashbaugh, N. J. Collett, H. W. Hatch, and J. A. Staton. Assessing the thermodynamic
signatures of  hydrophobic hydration for several common water models. J. Chem. Phys.,
132:124504, 2010.

[37] J. Jirsák and I. Nezbeda. Molecular mechanisms underlying the thermodynamic properties of
water. J. Mol. Liq., 134:99–106, 2007.

[38] J. Schmidt, J. VandeVondele, I.-F. W. Kuo, D. Sebastiani, J. I. Siepmann, J. Hutter, and C. J.
Mundy. Isobaric-isothermal molecular dynamics simulations utilizing density functional theory:
An assessment of  the structure and density of  water at near-ambient conditions. J. Phys. Chem.
B, 113:11959–11964, 2009.

196



[39] I-F. Kuo, C. J. Mundy, B. L. Eggimann, M. J. McGrath, J. I. Siepmann, B. Chen, J. Vieceli, and
D. J. Tobias. Structure and dynamics of  the aqueous liquid-vapor interface: A comprehensive
particle-based simulation study. J. Phys. Chem. B, 110:3738–3746, 2006.

[40] J. Wang, G. Román-Pérez, J. M. Soler, E. Artacho, and M.-V. Fernández-Serra. Density,
structure, and dynamics of  water: The effect of  van der waals interactions. J. Chem. Phys.,
134:024516, 2011.

[41] J. K. Shah, D. Asthagiri, L. R. Pratt, and M. E. Paulaitis. Balancing local order and long-ranged
interactions in the molecular theory of  liquid water. J. Chem. Phys., 127:144508, 2007.

[42] E. K. Goharshadi, A. Morsali, and G. A. Mansoori. A molecular dynamics study on the role of
attractive and repulsive forces in internal energy, internal pressure, and structure of  dense
fluids. Chem. Phys., 331:332–338, 2007.

[43] J. R. Errington and P. G. Debenedetti. Relationship between structural order and the anomalies
of  liquid water. Nature, 409:318–321, 2001.

[44] N. A. Denesyuk and J. D. Weeks. A new approach for efficient simulation of  coulomb
interactions in ionic fluids. J. Chem. Phys., 128:124109, 2008.

[45] C. Y. Lee, J. A. McCammon, and P. J. Rossky. The structure of  liquid water at an extended
hydrophobic surface. J. Chem. Phys., 80:4448–4455, 1984.

[46] B. J. Berne, J. D. Weeks, and R. Zhou. Dewetting and hyrophobic interactions in physical and
biological systems. Annu. Rev. Phys. Chem., 60:85–103, 2009.

[47] P. Varilly, A. J. Patel, and D. Chandler. An improved coarse-grained model of  solvation and the
hydrophobic effect. J. Chem. Phys., 134:074109, 2011.

[48] R. C. Remsing, J. M. Rodgers, and J. D. Weeks. (to be published).

[49] T. D. Iordanov, G. K. Schenter, and B. C. Garrett. Sensitivity analysis of  thermodynamic
properties of  liquid water: A general approach to improve empirical potentials. J. Phys. Chem.
A, 110:762–771, 2006.

[50] E. Marcotte, F. H. Stillinger, and S. Torquato. Optimized monotonic convex pair potentials
stabilize low-coordinated crystals. Soft Matter, 7:2332–2335, 2011.

[51] S. B. Zhu and C. F. Wong. Sensitivity analysis of  water thermodynamics. J. Chem. Phys.,
98:8892–8899, 1993.

197



[52] D. M. Huang and D. Chandler. Cavity formation and the drying transition in the lennard-jones
fluid. Phys. Rev. E, 61:1501–1506, 2000.

[53] D. M. Huang, P. L. Geissler, and D. Chandler. Scaling of  hydrophobic solvation free energies. J.
Phys. Chem. B, 105:6704–6709, 2001.

[54] H. Acharya and S. Garde. (to be published).

[55] D. M. Huang and D. Chandler. The hydrophobic effect and the influence of  solute-solvent
attractions. J. Phys. Chem. B, 106:2047–2053, 2002.

[56] F. H. Stillinger and A. Ben-Naim. Liquid-vapor interface potential for water. J. Chem. Phys.,
47:4431–4437, 1967.

[57] C. H. Bennett. Efficient estimation of  free energy differences from monte carlo data. J.
Comput. Phys., 22:245–268, 1976.

[58] A. Pohorille, C. Jarzynski, and C. Chipot. Good practices in free-energy calculations. J. Phys.
Chem. B, 114:10235–10253, 2010.

[59] P. R. ten Wolde and D. Chandler. Drying-induced hydrophobic polymer collapse. Proc. Natl.
Acad. Sci. USA, 99:6539–6543, 2002.

[60] S. Rajamani, T. M. Truskett, and S. Garde. Hydrophobic hydration from small to large
lengthscales: Understanding and manipulating the crossover. Proc. Natl. Acad. Sci. USA,
102:9475–9480, 2005.

[61] P. A. Egelstaff  and B. Widom. Liquid surface tension near the triple point. J. Chem. Phys.,
53:2667, 1970.

[62] F. Sedlmeier and R. R. Netz. The spontaneous curvature of  the water-hydrophobe interface. J.
Chem. Phys., 137:135102, 2012.

[63] S. Garde, G. Hummer, A. E. García, M. E. Paulaitis, and L. R. Pratt. Origin of  entropy
convergence in hydrophobic hydration and protein folding. Phys. Rev. Lett., 77:4966–4968, 1996.

[64] G. Hummer, S. Garde, A. E. García, M. E. Paulaitis, and L. R. Pratt. Hydrophobic effects on a
molecular scale. J. Phys. Chem. B, 102:10469–10482, 1998.

[65] F. Sedlmeier, D. Horinek, and R. R. Netz. Entropy and enthalpy convergence of  hydrophobic
solvation beyond the hard-sphere limit. J. Chem. Phys., 134:055105, 2011.

198



[66] G. Graziano. A van der waals approach to the entropy convergence phenomenon. Phys. Chem.
Chem. Phys., 6:406–410, 2004.

[67] G. Hummer, S. Garde, A. E. García, A. Pohorille, and L. R. Pratt. An information theory
model of  hydrophobic interactions. Proc. Natl. Acad. Sci. USA, 93:8951–8955, 1996.

[68] M. R. Shirts and J. D. Chodera. Statistically optimal analysis of  samples from multiple
equilibrium states. J. Chem. Phys., 129:124105, 2008.

[69] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force field for the
simulation of  proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 117:5179–5197,
1995.

[70] L. A. Girifalco. Molecular properties of  c60 in the gas and solid phases. J. Phys. Chem.,
96:858–861, 1992.

[71] N. Choudhury. A molecular dynamics simulation study of  buckyballs in water: atomistic versus
coarse-grained models of  c60. J. Chem. Phys., 125:034502, 2006.

[72] K. Lum and A. Luzar. Pathway to surface-induced phase transition of  a confined fluid. Phys.
Rev. E, 56:R6283, 1997.

[73] A. P. Willard and D. Chandler. The role of  solvent fluctuations in hydrophobic assembly. J.
Phys. Chem. B, 112:6187–6192, 2008.

[74] A. J. Patel, P. Varilly, D. Chandler, and S. Garde. Quantifying density fluctuations in volumes of
all shapes and sizes using indirect umbrella sampling. J. Stat. Phys., 145:265–275, 2011.

[75] L. Li, D. Bedrov, and G. D. Smith. A molecular-dynamics simulation study of  solvent-induced
repulsion between c60 fullerenes in water. J. Chem. Phys., 123:204505, 2005.

[76] A. Chaimovich and M. S. Shell. Anomalous waterlike behavior in spherically-symmetric water
models optimized with the relative entropy. Phys. Chem. Chem. Phys., 11:1901–1915, 2009.

[77] M. U. Hammer, T. H. Anderson, A. Chaimovich, M. S. Shell, and J. Israelachvili. The search for
the hydrophobic force law. Faraday Discuss., 146:299–308, 2010.

[78] S. Rajamani, T. Ghosh, and S. Garde. Size dependent ion hydration, its asymmetry, and
convergence to macroscopic behavior. J. Chem. Phys., 120:4457, 2004.

199



[79] J. P. Bardhan, P. Jungwirth, and L. Makowski. Affine-response model of  molecular solvation of
ions: Accurate predictions of  asymmetric charging free energies. J. Chem. Phys., 137:124101,
2012.

[80] G. Hummer, L. R. Pratt, and A. E. García. Free energy of  ionic hydration. J. Phys. Chem.,
100:1206–1215, 1996.

[81] G. Hummer, L. R. Pratt, and A. E. García. Molecular theories and simulation of  ions and polar
molecules in water. J. Phys.Chem. A, 102:7885–7895, 1998.

[82] T. L. Beck, M. E. Paulaitis, and L. R. Pratt. The Potential Distirbution Theorem and Models of
Molecular Solutions. Cambridge University Press, 2006.

[83] N. Agmon. Liquid water: From symmetry distortions to diffusive motion. Acc. Chem Res.,
45:63–73, 2012.

[84] V. Molinero and E. B. Moore. Water modeled as an intermediate element between carbon and
silicon. J. Phys. Chem. B, 113:4008–4016, 2009.

[85] D. T. Limmer and D. Chandler. Corresponding states for mesostructure and dynamics of
supercooled water. DOI: 10.1039/C3FD00076A, 2013.

[86] P. Jedlovszsky, M. Predota, and I. Nezbeda. Hydration of  apolar solutes of  varying size: a
systematic study. Mol. Phys., 104:2465–2476, 2006.

[87] H. S. Ashbaugh. Convergence of  molecular and macroscopic continuum descriptions of  ion
hydration. J. Phys. Chem. B, 104:7235–7238, 2000.

[88] E. Harder and B. Roux. On the origin of  the electrostatic potential difference at a
liquid-vacuum interface. J. Chem. Phys., 129:234706, 2008.

[89] K. Leung, S. B. Rempe, and O. A. von Lilienfeld. Ab initio molecular dynamics calculations of
ion hydration free energies. J. Chem. Phys., 130:204507, 2009.

[90] K. Leung and M. Marsman. Energies of  ions in water and nanopores within density functional
theory. J. Chem. Phys., 127:154722, 2007.

[91] M. D. Baer, A. C. Stern, Y. Levin, D. J. Tobias, and C. J. Mundy. Electrochemical surface
potential due to classical point charge models drives anion adsorption to the air-water interface.
J. Phys. Chem. Lett., 3:1565–1570, 2012.

[92] E. V. Kholopov. Mean potential of  bethe in the classical problem of  calculating bulk
electrostatic potentials in crystals. phys. stat. sol. (b), 243:1165–1181, 2006.

200



[93] F. E. Harris. “Hartee-Fock Studies of  Electronic Structures of  Crystalline Solids” in Theoretical Chemistry:
Advances and Perspectives Volume 1. Academic Press, 1975.

[94] S. M. Kathmann, I-F. W. Kuo, C. J. Mundy, and G. K. Schenter. Understanding the surface
potential of  water. J. Phys. Chem. B, 115:4369–4377, 2011.

[95] F. Figueirido, G. S. Del Buono, and R. M. Levy. On finite-size effects in computer simulations
using the ewald potential. J. Chem. Phys., 103:6133–6142, 1995.

[96] M. A. Wilson, A. Pohorille, and L. R. Pratt. Comment on “study on the liquid-vaport interface
of  water. i. simulation results of  thermodynamics properties and orientational structure”. J.
Chem. Phys., 90:5211–5213, 1989.

[97] L. R. Pratt. Contact potentials of  solution interfaces: Phase equilibrium and interfacial electric
fields. J. Phys. Chem., 96:25–33, 1992.

[98] X. Song, D. Chandler, and R. A. Marcus. Gaussian field model of  dielectric solvation dynamics.
J. Phys. Chem., 100:11954–11959, 1996.

[99] T. L. Beck. The influence of  water interfacial potentials on ion hydration in bulk water and near
interfaces. Chem. Phys. Lett., 561-562:1–13, 2013.

[100] G. Schenter. (to be published).

[101] L. Horváth, T. Beu, M. Manghi, and J. Palmeri. The vapor-liquid interface potential of
(multi)polar fluids and its influence on ion solvation. J. Chem. Phys., 138:154702, 2013.

[102] Y. Shi and T. L. Beck. Length scales and interfacial potentials in ion hydration. J. Chem. Phys.,
139:044504, 2013.

[103] M. Born. Volumes and hydration warmth of  ions. Z. Phys., 1:45–48, 1920.

[104] A. Zangwill. Modern Electrodynamics. Cambridge University Press, 2013.

[105] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, 1999.

[106] Ph. A. Martin. Sum rules in charged fluids. Rev. Mod. Phys., 60:1075–1127, 1988.

[107] F. H. Stillinger and R. Lovett. General restriction on the distribution of  ions in electrolytes. J.
Chem. Phys., 49(5):1991–1994, 1968.

[108] F. H. Stillinger and R. Lovett. Ion-pair theory of  concentrated electrolytes. i. basic concepts. J.
Chem. Phys., 48(9):3858–3868, 1968.

201



[109] R. Lovett and F. H. Stillinger. Ion-pair theory of  concentrated electrolytes. ii. approximate
dielectric response calculation. J. Chem. Phys., 48(9):3869–3884, 1968.

[110] Z. Hu and J. D. Weeks. Efficient solutions of  self-consistent mean field equations for dewetting
and electrostatics in nonuniform liquids. Phys. Rev. Lett., 105:140602, 2010.

[111] C. J. Fennell, L. Li, and K. A. Dill. Simple liquid models with corrected dielectric constants. J.
Phys. Chem. B, 116:6936–6944, 2012.

[112] B. P. Lee and M. E. Fisher. Density fluctuations in an electrolyte from generalized
debye-hückel theory. Phys. Rev. Lett., 76(16):2906–2909, 1996.

[113] B. P. Lee and M. E. Fisher. Charge oscillations in debye-hückel theory. Europhys. Lett.,
39(6):611–616, 1997.

[114] S. K. Das, Y. C. Kim, and M. E. Fisher. Near critical electrolytes: Are the charge-charge sum
rules obeyed? J. Chem. Phys., 137:074902, 2012.

[115] R. W. Zwanzig. High-temperature equation of  state by a perturbation method. i. nonpolar
gases. J. Chem. Phys., 22:1420, 1954.

[116] C. Chipot and A. Pohorille, editors. Free Energy Calculations: Theory and Applications in Chemistry
and Biology. Springer, 2007.

[117] J. G. Kirkwood. Statistical mechanics of  fluid mixtures. J. Chem. Phys., 3:300–313, 1935.

[118] G. M. Torrie and J. P. Valleau. Nonphysical sampling distributions in monte carlo free-energy
estimation: Umbrella sampling. J. Comput. Phys., 23:187–199, 1977.

[119] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett.,
78:2690–2693, 1997.

[120] G. E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation
for free energy differences. Phys. Rev. E, 60:2721–2726, 1999.

[121] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler. Transition path sampling: Throwing
ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem., 53:291–318, 2002.

[122] R. Schulz, B. Lindner, L. Petridis, and J. C. Smith. Scaling of  multimillion-atom biological
molecular dynamics simulation on a petascale supercomputer. J. Chem. Theory Comput.,
5:2798–2808, 2009.

202



[123] P. H. Hünenberger and J. A. McCammon. Effect of  artificial periodicity in simulations of
biomolecular under ewald boundary conditions: a continuum electrostatics study. Biophys.
Chem., 78:69–88, 1999.

[124] J. Lekner. Summation of  coulomb fields in computer-simulated disordered systems. Physica A,
176:485–498, 1991.

[125] T. L. Beck. Hydration free energies by energetic partitioning of  the potential distribution
theorem. J. Stat. Phys., 145:335–354, 2011.

[126] J. D. Weeks. External fields, density functionals, and the gibbs inequality. J. Stat. Phys.,
110:1209–1217, 2003.

[127] J. D. Weeks, D. Bedeaux, and B. J. A. Zielinska. Anisotropic van der waals model of  the
liquid-vapor interface. J. Chem. Phys., 80:3790–3800, 1984.

[128] G. E. Crooks and D. Chandler. Gaussian statistics of  the hard-sphere fluid. Phys. Rev. E,
56:4217–4221, 1997.

[129] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack - efficient fortran subprograms for the
solution of  separable elliptic partial differential equations.
http://www2.cisl.ucar.edu/resources/legacy/fishpack, 2011.

[130] N. A. Denesyuk and J. D. Weeks. in preparation.

[131] O. Mishima and H. E. Stanley. The relationship between liquid, supercooled, and glassy water.
Nature, 396:329–335, 1998.

[132] P. H. Poole, R. K. Bowles, I. Saika-Voivod, and F. Sciortino. Free energy surface of  st2 water
near the liquid-liquid phase transition. J. Chem. Phys., 138:034505, 2013.

[133] Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti. Low-temperature fluid-phase behavior
of  st2 water. J. Chem. Phys., 131:104508, 2009.

[134] Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos, and P. G. Debenedetti. Liquid-liquid transition in
st2 water. J. Chem. Phys., 137:214505, 2012.

[135] D. T. Limmer and D. Chandler. The putative liquid-liquid transition is a liquid-solid transition
in atomistic models of  water. J. Chem. Phys., 135:134503, 2011.

[136] D. T. Limmer and D. Chandler. The putative liquid-liquid transition is a liquid-solid transition
in atomistic models of  water. ii. J. Chem. Phys., 138:214504, 2013.

203



[137] S. D. Overduin and G. N. Patey. An analysis of  fluctuations in supercooled tip4p/2005 water. J.
Chem. Phys., 138:184502, 2013.

[138] D. E. Otten, P. R. Shaffer, P. L. Geissler, and R. J. Saykally. Elucidating the mechanism of
selective ion adsorption to the liquid water surface. Proc. Natl. Acad. Sci. USA, 109:701–705,
2012.

[139] P. L. Geissler. Water interfaces, solvation, and spectroscopy. Annu. Rev. Phys. Chem.,
64:317–337, 2013.

[140] A. C. Stern, M. D. Baer, C. J. Mundy, and D. J. Tobias. Thermodynamics of  iodide adsorption at
the instantaneous air-water interface. J. Chem. Phys., 138:114709, 2013.

[141] S. Toxvaerd and J. C. Dyre. Role of  the first coordination shell in determing the equilibrium
structure and dynamics of  simple liquids. J. Chem. Phys., 135:134501, 2011.

[142] J. D. Weeks. (unpublished).

[143] Y. G. Chen. General Theory of  Nonuniform Fluids: From Hard Spheres to Ionic Fluids. PhD thesis,
University of  Maryland, 2004.

[144] P. S. Varilly. Fluctuations in Water and their Relation to the Hydrophobic Effect. PhD thesis, University
of  California, Berkeley, 2011.

[145] A. P. Willard and D. Chandler. Instantaneous liquid interfaces. J. Phys. Chem. B, 114:1954–1958,
2010.

204


	Introduction
	Uniform Liquid Structure is Dominated by Short Ranged Forces
	Local Molecular Field Theory for Nonuniform Fluids
	Structure and Thermodynamics of Bulk Water

	Deconstructing Classical Water Models I: Anomalous Structure and Thermodynamics of Bulk Water
	Introduction
	Local Hydrogen Bonds in Full and Truncated Water Potentials
	Simulation Details
	Thermodynamic Anomalies
	The Cascade of Anomalies
	Unbalanced forces in nonuniform aqueous media from the viewpoint of LMF theory
	Conclusions

	Deconstructing Classical Water Models II: The Length Scale Dependence of Hydrophobic Hydration and Association
	Introduction
	Models and Simulation Details
	The Influence of Long Ranged Interactions on Interfacial Structure
	The Response of Interfacial Water to Unbalanced Forces
	Hydrogen bonding sets the scale for the crossover in hydration thermodynamics
	Entropy convergence is a consequence of the hydrogen bond network
	Long ranged interactions and the size dependence of hydrophobic association
	Conclusions

	On Molecular Interactions and the Response to Nanoscale Broken Symmetries I: Cavity Solvation
	Introduction
	The Negativity Track
	Structural Response to Cavities
	Thermodynamic Consequences: Ion Solvation and the Cavity Potential
	Length-scales of Ion Solvation
	Conclusions

	On Molecular Interactions and the Response to Nanoscale Broken Symmetries II: Dielectric Response
	Ion Solvation from the LMF Perspective
	Regularizing point charge singularities: Probing the dielectric response of bulk fluids with Gaussian charges
	Long-Wavelength Dielectric Response is Insensitive to Molecular-Scale Details
	Conductors Require More Detail
	Ewald Finite Size Effects in the Gaussian Electrostatic Potential
	Conclusions

	Free Energy Calculations with Local Molecular Field Theory
	Introduction
	LMF Theory of Solvation
	Alchemical Free Energy Calculations
	Density Fluctuations and Hard Sphere Solvation
	Conclusions

	Conclusions and Future Work
	LMF Theory in Practice
	Obtaining a Self-Consistent Solution of the LMF Equation
	Solving the LMF equation at each iteration
	Iterating the LMF equation with linear response theory

	Derivation of the Bethe Potential
	Ion Solvation from Potential Distribution Theory
	Derivation of Equation 4.6
	LMF-Based Multipole Expansions
	Multipole Moment Expansion of Gaussian-Smoothed Charge Densities
	Multipole Moment Expansion of SR Charge Densities
	Gaussian Smoothing of a Molecule of SPC/E Water
	Point Charge Distribution

	Coupling Parameter Integration
	Further Consequences of Equation 5.7
	Derivation of Equation 6.16 from Mean-Field Approximations to Equation 6.6
	Stable iteration of the LMF equation for systems with a net charge
	LMF Free Energy Calculations with Multiple Equilibrium States
	The Multi-State Bennett Acceptance Ratio in the Full System
	Ensemble Averages in the Full System from Biased Sampling Performed in the Mimic System
	Ensemble Averages in the Full System from Biased Sampling Performed in the Strong Coupling System

	Liquid-Vapor Interfaces of Truncated Water Models

