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One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to
several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are
not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput
searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and
appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory
framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent,
metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency
over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the
accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a
broad impact on chemistry and materials science.

Kohn–Sham density functional theory (DFT) is the most widely
used electronic structure method because of its computational
efficiency and reasonable accuracy. It delivers the exact

ground-state total energy and electron density, derived from
theory, while its exchange-correlation energy Exc, the ‘glue’ that
binds one atom to another, must be approximated in practice.
The local density approximation (LDA)1–3, the first approximation
in DFT, constructs a local energy density at position r from just
the local electron density n(r) =

∑occ
i φi

∣∣ ∣∣2, where φi are occupied
Kohn–Sham orbitals (spin is suppressed here).

The LDA was derived from (and is exact for) any uniform elec-
tron gas1, and tends to minimize the inhomogeneity of the electron
densities of real materials and overestimate the strengths of all bonds
near equilibrium. By introducing the electron density gradient to
reduce this tendency, generalized gradient approximations
(GGAs) soften bonds. Depending on how the electron density gra-
dient is built in4,5, a GGA can be rather accurate for structures or
energies, but not for both6. This dilemma probably reflects a
formal limitation: a GGA cannot satisfy all the known exact con-
straints appropriate to a semilocal functional (LDA, GGAs and
meta-GGAs) where the exchange-correlation energy is efficiently
evaluated as a single integral over three-dimensional space. For
example, it is impossible for a GGA to simultaneously satisfy the
slowly varying density limit1 for extended systems and the tight
lower bound on the exact exchange energy of single-orbital
systems7 while still delivering accurate exchange energies8.
Semilocal functionals can be accurate for electron densities for
which the exchange-correlation hole around an electron is suffi-
ciently localized. Therefore, exact constraints consistent with this
condition are appropriate to semilocal functionals. Among GGAs,
the standard Perdew–Burke–Ernzerhof (PBE) GGA4 gives balanced

descriptions for structures and energies with a significant overall
improvement over LDA. However, the non-empirical PBE GGA
largely loses the intermediate-range van der Waals interaction, the
strength of which is overestimated in the LDA.

Introducing the kinetic energy density τ = (1/2)
∑occ

i ∇φi

∣∣ ∣∣2

within meta-GGAs8–15 is a way to circumvent this ‘structure or
energy’ dilemma. Because the occupied orbitals are already there
for constructing the non-interacting kinetic energy, their use to con-
struct the exchange-correlation energy semilocally adds little to the
computational cost. The kinetic energy density for a uniform elec-
tron gas is τunif = (3/10)(3π2)2/3n5/3, and τw = (1/8)|∇n|2/n for
the single-orbital systems. By using the dimensionless variable
α = (τ – τw)/τunif, meta-GGAs can recognize the slowly varying den-
sities (α∼ 1, characterizing metallic bonds) and single-orbital systems
(α = 0, characterizing covalent single bonds) and thus reduce to
different GGAs for these two dramatically different limits8,13,15.
α also has the power to identify non-covalent bonds with α≫ 1
between two closed shells, where τ from the anti-bonding16

highest-occupied molecular orbital overwhelms τunif and τw. α is
directly related to the electron localization function (ELF)17, where
ELF = 1/(1 + α2), and therefore identifies different chemical
bonds18,19. Other dimensionless variables built from τ have been
used by meta-GGAs (for example, by the Tao–Perdew–Staroverov–
Scuseria (TPSS)10 and M06L11 meta-GGAs). However, due to the
inability of these dimensionless variables to distinguish among differ-
ent chemical bonds, TPSS largelymisses the van derWaals interaction
and M06L shows strong numerical instability for single bonds19.

The strongly constrained and appropriately normed (SCAN)
meta-GGA15 takes advantage of the above flexibility to satisfy all
17 exact constraints appropriate to a semilocal functional, including
the tight lower bound7 on the exchange energy. It then uses
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appropriate norms, where the exact exchange-correlation hole is
sufficiently localized (for example, the hydrogen atom), as guidance
across the constraints. Although SCAN uses no bonded information
in its construction, the power of α together with the strong con-
straints and appropriate norms make it accurate for diversely
bonded materials, with genuine non-empirical predictive power.

Due to the semilocal feature in the computation, meta-GGAs are
much more efficient than hybrid GGAs, which are the current
beyond-GGA choice. By mixing GGAs with non-local exact
exchange, hybrid GGAs (for example, the PBE0 hybrid GGA20,
where 25% of the exact exchange energy is mixed with 75% of PBE
GGA exchange) can further improve the description of covalent,
ionic and hydrogen bonds. However, hybrid GGAs still fail to
describe van der Waals interactions. PBE0 is especially hard to
evaluate for metallic systems, although some range-separated versions
(without long-range exact exchange) are easier. The computational
cost of a hybrid functional can be 10 to 100 times21 that of a semilocal
functional in standard plane-wave codes. Another problem with
hybrids is that a universal exact-exchange mixing parameter is not
determined by any exact condition, nor is the range-separation
parameter in a range-separated hybrid.

The SCAN meta-GGA has been shown15 to be superior to the
PBE GGA for some standard molecular test sets and a small collec-
tion of solids. The mean absolute errors for SCAN15 are smaller than
those for PBE by a factor of about 4 for the atomization energies of
the 223 G3 molecules, a factor of 3 for the binding energies of the
S22 set of weakly bound dimers of small molecules, and a factor
of 4 for the LC20 set of lattice constants for solids. SCAN is also
more accurate, by about 30%, in predicting the BH76 energy barriers
to chemical reactions. Future studies will also show that the mean
absolute errors of SCAN for the heats of formation of 94 binary
solids are smaller than those of PBE by about 30%, or a factor
of 3, for compounds with or without transition-metal elements,
respectively. However, this Article shows that SCAN has an unex-
pected and striking performance for diversely bonded systems,
many of which were believed to be out of reach of semilocal
functionals, and is comparable to or even more accurate than a
computationally more expensive hybrid GGA.

Results and discussion
Van der Waals interactions in ice phases and water hexamer
clusters. It was once believed that non-empirical semilocal
functionals and their hybrids were incapable of describing the van
der Waals bonds arising from intermediate-range van der Waals
interactions. Van der Waals interactions are typically weak, but
still important (for example, for the structures of a hydrogen-
bonded network like ice). In the binding energy difference per
H2O between one ice phase and another, the van der Waals
attraction becomes more important compared with the hydrogen-
bonding energies when the density of water molecules increases22.
Figure 1a shows that both the PBE GGA and PBE0 hybrid
significantly destabilize high-pressure phases relative to Ih (the
stable phase of ice at ambient pressure), and the addition of the
Tkatchenko–Scheffler23 van der Waals correction (vdW_TS)
improves the energy differences dramatically compared to the
experimental results or the highly accurate yet expensive diffusion
Monte Carlo (DMC) predictions22,24. Interestingly, and surprisingly,
the SCAN meta-GGA15 yields energy differences between all the
different ice phases studied here with an accuracy comparable to
that of PBE0+vdW_TS and considerably improves upon the
predictions of PBE0+vdW_TS for the energy difference between
ice Ih and the high-density phase VIII. Moreover, SCAN predicts
that ice II is 3 meV per H2O more stable than ice IX, in
agreement with experiments, while this ordering is reversed by
both PBE+vdW_TS and PBE0+vdW_TS. This might be due to
the many-body nature of the van der Waals interaction, which is

missed by the pairwise vdW_TS correction but captured by
SCAN. The lower panel of Fig. 1a also shows that SCAN predicts
the volume changes between ice phases in near-quantitative
agreement with the experimental results and thus with greater
accuracy than all other functionals considered here.

In addition to ice in its different phases, water clusters also
present a challenge for semilocal and hybrid density functionals.
Water hexamer clusters are the most notorious examples25. The
water hexamer has four low-energy configurations: prism, cage,
book and cyclic. High-level wavefunction methods25 (for example,
the coupled cluster singles and doubles with perturbative triples,
CCSD(T)) all predict the prism configuration to be the most
stable, followed by the cage, book and cyclic structures. However,
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Figure 1 | SCAN captures the intermediate-range, many-body van
der Waals interactions necessary for a quantitative description of
various ices and gas-phase water hexamers. a, The relative sublimation
energy ΔE0 and equilibrium volume change ΔV0 per water molecule of
seven hydrogen-ordered ice phases with respect to the ground-state ice Ih
illustrate that SCAN is the only functional tested that predicts the relative
stability of ice phases in quantitative agreement with experimental results.
The sublimation energy (E0) is the energy needed to break an ice into
isolated water molecules. b, The relative binding energy per water molecule
of four low-energy water hexamers similarly illustrates that SCAN is the only
semi-local density functional approximation that predicts the known
energetic ordering of these clusters, evidenced by the agreement between
SCAN and CCSD(T). The zero-point energy effects have been removed from
the experimental results46,47 for ice. Data points (and error bars) computed
by methods other than SCAN are from refs 24 and 25 for the ice phases and
water hexamers, respectively. Lines are guides to the eye.
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PBE and PBE0 predict prism to be the most unstable and book the
most stable. Adding the vdW_TS stabilizes prism more than book
and cyclic, but cage is still more favoured than prism. Strikingly,
again, SCAN predicts the correct energetic ordering of the hexamers
and quantitatively follows the CCSD(T) results, as shown in Fig. 1b.

The accurate SCAN description of the ice polymorphs and water
hexamers defies the conventional wisdom and shows that SCAN
has the ability to capture the intermediate-range van der Waals
interaction11,19. Of course, SCAN cannot describe the long-range
van der Waals interaction, which exists even for non-overlapping
electron densities.

Covalent and hydrogen bonding in water monomer, dimer,
hexamer and ice Ih. In H2O, the hydrogen atoms and oxygen
atom are covalently bonded with an angle of about 105° between
the OH bonds. An accurate description of these covalent bonds is
of paramount importance to modelling water from first principles,
because the resultant molecular structure underlies its hydrogen-
bonding network. All the functionals considered in Table 1 give
reasonably accurate predictions for the bond length and bond
angle as well as the vibrational frequencies and dipole moment of
a single water molecule, while PBE0 and SCAN are the best
among them in comparison with the experimental results,
demonstrating that SCAN is highly accurate for covalent bonds.
Despite the reasonable description of the monomer provided by
these functionals, their accuracy in describing hydrogen bonds
varies. LDA is seldom used for the study of water due to its
overestimation of the strengths of the hydrogen bonds, as
supported by the data in Table 1. PBE greatly improves the
binding energies of the water dimer, hexamer (at the prism
configuration) and ice Ih. After including the missing van der
Waals interaction, PBE+vdW_TS slightly overestimates the
binding energies, suggesting that PBE overestimates the strength
of the hydrogen bonds. SCAN, capturing the intermediate-range
van der Waals interaction as demonstrated above, performs
similarly to PBE+vdW_TS for the binding energies and thus also
overestimates the strength of the hydrogen bonds. Indeed, pair
correlations between the oxygen nuclei and centres of maximally
localized Wannier functions, essentially representing lone pairs,
are similar in SCAN and PBE (see Supplementary Information),
quantitatively supporting this conclusion26. Semilocal functionals
usually overestimate the polarizability and hyperpolarizability of
the water molecule, as shown in Table 1, which can lead to a too
large dipole moment for a water molecule bound to other water
molecules26 and thus to an overestimated hydrogen bond.

Overestimated polarizabilities and hyperpolarizabilities are
typically improved by exact-exchange mixing or self-interaction
correction27,28, as demonstrated in Table 1 by PBE0. This
improvement is also manifested in the binding energies from
PBE+vdW_TS to PBE0+vdW_TS.

Covalent and metallic bonding in crystalline and liquid Si. Silicon
crystallizes under ambient conditions in the diamond structure with
a coordination number of 4 and undergoes a semiconductor–metal
phase transition at around 12 GPa of pressure into the β-Sn
structure with a coordination number of 6. Figure 2a shows that,
compared to experiment or to computationally expensive high-
level DMC calculations29, both LDA and PBE give accurate
volumes for Si in the diamond and β-Sn phases, but PBE gives a
more realistic yet still unsatisfactory energy difference between
them. On the other hand, SCAN and the Heyd–Scuseria–
Ernzerhof (HSE) hybrid GGA30, a range-separated version of the
PBE0 hybrid GGA, predict the energy difference of the two
phases in excellent agreement with the DMC result.

It has been argued29 that semilocal functionals do not predict an
accurate energy difference between these two phases because they
significantly underestimate the bandgap of the diamond phase,
while HSE improves the bandgap and therefore the energy differ-
ence. However, this is not a satisfactory explanation. SCAN gives
a bandgap of diamond Si only about halfway between PBE and
experiment, but a very accurate structural energy difference. The
improvement in the energy difference comes from the ability of
SCAN to distinguish between covalent and metallic bonds and to
properly stabilize covalent single bonds31.

Figure 2b shows that SCAN significantly improves the interstitial
defect formation energies of diamond Si when compared with LDA
and PBE, reaching the level of accuracy of the HSE hybrid. The
three lowest-energy interstitial defects in Si are T (tetrahedral site),
H (hexagonal) and X (split), for which DMC predicts defect formation
energies of 5.05, 5.13 and 4.94 eV, respectively32. However, these DMC
values were calculated using GGA-relaxed geometric structures in a
small supercell. The best interstitial formation energies estimated
from experiments29 are in the range of 4.23–4.85 eV, with which the
results of both SCAN and HSE are in excellent agreement.

On melting, Si undergoes a transition from a semiconducting
solid to a metallic liquid that contains transient covalent bonds
between neighbouring atoms. The properties of liquid Si (l-Si)
depend sensitively on the relative amounts of metallic and covalent
bonding present in solution, and we find that SCAN provides a good
description of this complex liquid. Simulations of l-Si in the

Table 1 | Properties of the water monomer, dimer, hexamer (at the prism configuration) and ice Ih at equilibrium.

LDA PBE PBE0 PBE+vdW_TS PBE0+vdW_TS SCAN Best ab initio Expt
R(O–H) 0.970 0.970 0.959 0.969 0.957 0.961 – 0.957
∠HOH 105.0 104.2 104.9 104.2 104.9 104.4 – 104.5
v1 3,837 3,802 3,962 3,810 – 3,911 – 3,943
v2 3,726 3,697 3,857 3,706 – 3,806 – 3,832
v3 1,551 1,592 1,633 1,595 – 1,647 – 1,648
μ 1.858 1.804 1.854 1.804 1.853 1.847 – 1.855
α 10.24 10.33 9.58 – – 9.81 9.65 9.63 ± 0.20
β 36.0 35.5 28.7 – – 34.4 29.6 –
R(O–O) 2.71 2.90 2.89 2.90 2.89 2.86 2.91 2.98
Eb

D 193.6 109.7 106.7 117.8 113.7 118.3 108.8 108 ± 1
Eb

H – 336.1 322.9 369.6 360.6 376.8 347.6 –
V0 25.37 30.79 30.98 29.67 29.88 29.56 31.69 ± 0.01 30.91
E0 1095 636 598 714 672 660 605 ± 5 610

For the water monomer, R(O–H) is the bond length (Å);∠HOH is the bond angle; v1, v2 and v3 are the vibrational frequencies (cm
−1) (v1 and v2 are the asymmetric and symmetric O–H stretching modes and v3 is

the H–O–H bending mode); μ is the dipole moment (Debye); α is the isotropic polarizability; and β is the magnitude of the hyperpolarizability. α and β are in atomic units. For the water dimer, R(O–O) is the
distance between the two oxygen atoms and Eb

D is the binding energy (meV per H2O). Eb
H is the binding energy (meV per H2O) for the hexamer. The last two rows show the volume V0 (Å) and sublimation

energy E0 (meV per H2O) of ice Ih at equilibrium. The experimental values and the best ab initio estimations for the water monomer and dimer are from ref. 48. The experimental Eb
D is estimated by subtracting

the DMC zero-point vibrational energy49 from the experimentally measured dissociation energy50. The best ab initio estimates of α and β are the CCSD(T) values from ref. 51 and that of the hexamer is the CCSD
(T) value from ref. 25. For ice Ih, the zero-point energy effects have been extracted in the experimental results46,47 and values other than LDA and SCAN are from refs 24 and 25.
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isothermal–isobaric ensemble at T = 1,800 K and P = 0 bar yield a
density of 2.57 g cm–3 from SCAN, in good agreement with the
experimental value33 of 2.59 g cm–3, whereas PBE (2.54 g cm–3)
slightly underestimates and LDA (2.70 g cm–3) overestimates the

density, as expected. SCAN also yields a position of the first peak
of the pair correlation function g(r) that is in excellent agreement
with that of experiment34, as shown in Fig. 2c, while those of
LDA and PBE are shifted to slightly larger distances. The SCAN
description of l-Si leads to a pronounced second peak in g(r), as
in the experimental results, albeit shifted to larger distances. Such
a pronounced second peak is lacking in both LDA and PBE descrip-
tions. The increased accuracy of SCAN with respect to PBE and
LDA is again due to a better discrimination of metallic and covalent
bonds, with the latter manifesting the tetrahedral coordination
structure of molten Si, highlighted by the simulation snapshot
showing an electron density corresponding to covalent bonds
between Si atoms in a tetrahedral arrangement.

Ionic bonding in ferroelectric and multiferroic materials.
Interactions between ionic species can be primarily electrostatic in
origin, but can also have a significant component of van der
Waals interactions among highly polarizable negative ions as well
as covalent characteristics between nearest-neighbour ions35,
making the description of such systems challenging. SCAN has
been shown to be remarkably good for describing solid MnO2
(ref. 36). Here, SCAN was tested on two types of ionic material
that are more stringent tests of density functionals. These are
ferroelectric materials such as the prototypical BaTiO3 and
PbTiO3, which exhibit spontaneous electric polarization due to
structural instabilities at low temperature37, and multiferroic
materials like BiFeO3, with ferroelectric and antiferromagnetic
properties38 (Table 2). The prediction of structural instabilities
from first-principles calculations is extremely sensitive to volume
changes, and even small errors of 1–2% in the lattice constants
obtained from LDA and PBE yield unsatisfactory predictions for
ferroelectric materials. PBE, for example, is particularly poor in its
description of these materials, as it predicts spurious
supertetragonality (too large c/a, where c/a is the ratio of lattice
constants c and a) in BaTiO3 and PbTiO3 (ref. 37).

Efforts have been made to design functionals for solids to remedy
this deficiency. The B1WC hybrid GGA37 was designed for ferro-
electric materials. It mixes 16% of exact exchange energy with
84% of Wu–Cohen (WC) GGA exchange39 to fit the properties of
BaTiO3. Table 2 shows that B1WC predicts volumes for these three
materials in excellent agreement with the experimental results, as
well as very accurate c/a ratios and polarizations for BaTiO3 and
PbTiO3. On the other hand, the more commonly used HSE hybrid
GGA inherits the spurious supertetragonality for BaTiO3 and
PbTiO3 from its parent PBE GGA37 (although less severely) and
predicts too large polarizations. SCAN is overall almost comparable
to the computationally expensive B1WC and much better than LDA
and PBE for the above properties. The SCAN energy differences
between the cubic and tetragonal phases are much closer to the
B1WC values than either LDA, PBE or even HSE.

SCAN also yields more realistic bandgaps for these compounds
than LDA and PBE, consistent with our findings in Si and other
semiconductors. This is possible because the SCAN meta-GGA,
like the hybrid functionals, is implemented in a generalized
Kohn–Sham scheme in which the exchange-correlation potential
is not a multiplicative operator. Gaps of hybrid GGAs are,
however, more realistic than SCAN gaps.

For the magnetic moment of Fe in BiFeO3, PBE predicts the most
accurate value (3.70 μB) in comparison with the experimental one
(3.75 μB), while SCAN is the second best with 3.96 μB, and
B1WC significantly overestimates this value. Remarkably, for ferro-
electrics and multiferroics the non-empirical and semilocal SCAN
meta-GGA is often comparable to or better than a hybrid functional
fitted to BaTiO3.

In studies of multiferroics, where late 3d transition metals are
usually present to provide the magnetic properties, the Hubbard U
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Figure 2 | SCAN simultaneously describes covalent and metallic bonding
across the Si phase diagram. a, The energy difference between the metallic
β-Sn (left inset) and semiconducting diamond (right inset) phases of Si is
quantitatively captured by SCAN, as evidenced by the agreement with
hybrid functional (HSE) and diffusion Monte Carlo (DMC) results. The
vertical line indicates the experimental volume29 of diamond Si. The error
bar on the DMC result includes finite-size error estimates and statistical
errors32. b, The interstitial defect formation energy in diamond Si is also
quantitatively captured by SCAN. The SCAN predictions are within the range
of the experimental results29 (orange) for tetrahedral (T), hexagonal (H) and
split (X) defects. Defect atoms are in green, their nearest neighbours in red
and those in the second coordination shell in black. c, The pair correlation
function g(r) of liquid Si at T= 1,800 K involves a discrimination between
metallic and covalent bonding in the liquid state. SCAN can describe this
coexistence, resulting in better agreement with experimental results34.
Inset: snapshot of liquid Si using SCAN highlights the existence of transient
covalent bonding, with red isosurfaces of electron density corresponding to
covalent bonds between tetrahedrally arranged Si atoms (yellow).
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is often introduced for the LDA and PBE to account for the on-site
Coulomb interaction and thus to open the bandgap. Table 2
shows that the SCAN bandgap is comparable to that of PBE+U
with U = 2 eV for the Fe atoms40. Both SCAN and PBE+U give
similar magnetic moments for Fe, as well as comparable polariz-
ations. However, SCAN also yields more accurate predictions for
the volume.

Limitations of semilocal functionals. The exchange-correlation
hole is the density around an electron from which other electrons
are excluded. Semilocal functionals must fail for systems where
the exact exchange-correlation hole around an electron is quite
delocalized, for example, the long-range van der Waals interaction
and stretched H2

+, where such functionals show a large self-
interaction error. A long-range van der Waals correction has been
applied to SCAN to further improve the descriptions for the van
der Waals interaction (for example, the mean absolute relative
error (MARE) of the binding energies of 28 layered materials is
improved from about 60% for SCAN to 8%)41. Exact exchange
mixing or self-interaction correction has to be applied to SCAN
to better describe, for example, the hydrogen bonds between water
molecules and reaction barriers.

Conclusions
We have demonstrated that accurate first-principles structures and
energies of molecules and materials with diverse bonding are pre-
dicted by the non-empirical SCAN meta-GGA. These successes
were unexpected from a computationally efficient functional. They
suggest that a sufficiently sophisticated semilocal density functional
can be broadly accurate, although not universally, and thus that the
exact exchange-correlation hole around an electron is rather loca-
lized in many bonds at equilibrium. The examples unambiguously
show that SCAN, without being fitted to any bonded system, accu-
rately describes the major classes of molecular bonds, even better
than the LDA or PBE GGA, which are of comparable efficiency.
Furthermore, SCAN often yields an accuracy comparable to or
better than hybrid GGAs. SCAN will therefore facilitate first-
principles descriptions of systems with components dominated by
different bonding characteristics, such as interfaces between differ-
ent phases. Indeed, future work will show that SCAN has great pre-
dictive accuracy for the formation energies (and thus the relative
stabilities) of solids and for phase transitions in liquids, which
both require an accurate simultaneous description of different
bonding types.

Methods
All our DFT calculations are self-consistent. Most of the ab initio calculations for the
water monomer, dimer and hexamers were carried out in the Gaussian42 code,
except for those of PBE+vdW_TS and PBE0+vdW_TS, which were performed in
FHI-aims43. The geometric, vibrational and electrostatic properties were calculated
with the aug-cc-pvtz basis set in Gaussian and the tier-3 basis set in FHI-aims. The
binding energies of the water dimer and hexamers were obtained by extrapolating to
the complete basis set limit. The calculations for solids and liquids were performed
using the VASP code and PAW potentials in the implementation of Kresse and
Joubert44. For ice polymorphs, we used the geometries and computational settings of
ref. 24. The phase-transition calculations for Si followed the settings of ref. 31. The
interstitial defect calculations used an energy cutoff of 400 eV and a gamma-centred
4 × 4 × 4 k-mesh. The defects were placed in and relaxed with the host atoms of a
64-atom simulation cell, with the lattice constant determined by the underlying
functionals. AIMD simulations of liquid Si were performed with simulation cells of
216 atoms. An energy cutoff of 300 eV was used for the Si AIMD calculation.
Production runs of 20 ps and the gamma-only k-mesh were used in all AIMD
calculations and analysis. For simulations of ferroelectric and multiferroic materials,
an energy cutoff of 600 eV was used. We used a tetragonal cell of five atoms and a
gamma-centred 8 × 8 × 8 k-mesh for BaTiO3 and PbTiO3, and a hexagonal cell of
30 atoms and a gamma-centred 4 × 4 × 2 k-mesh for BiFeO3. The spin configuration
of BiFeO3 was fixed to the G-type antiferromagnetic state. The spin–orbit coupling
effect was neglected for all calculations. The spontaneous polarization was calculated
according to the modern theory of polarization45.
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